登录
首页 » matlab » 雷达matlab仿真,波束形成,角度测量,跟踪等等

雷达matlab仿真,波束形成,角度测量,跟踪等等

于 2021-02-19 发布
0 286
下载积分: 1 下载次数: 25

代码说明:

说明:  波形设计算法,阵列信号处理等相关知识的介绍仿真等(Introduction and Simulation of waveform design algorithm, array signal processing and other related knowledge)

文件列表:

23\angle_delta.m, 2196 , 2014-05-15
23\angle_k.m, 3591 , 2014-05-19
23\angle_k2.m, 1322 , 2014-04-21
23\data_Position_RMSE_5261942.xls, 16896 , 2014-05-26
23\data_Position_RMSE_5261945.xls, 16896 , 2014-05-26
23\data_Position_RMSE_5261946.xls, 16896 , 2014-05-26
23\data_Position_RMSE_5261953.xls, 108544 , 2014-05-26
23\data_Position_RMSE_526202.xls, 79872 , 1990-05-29
23\data_Position_RMSE_5291628.xls, 57856 , 2014-05-29
23\data_Position_RMSE_529165.xls, 57856 , 2014-05-29
23\data_Position_RMSE_731017.xls, 62976 , 2014-07-03
23\data_Position_RMSE_731714.xls, 62976 , 2014-07-04
23\data_Position_RMSE_741136.xls, 62976 , 2014-07-06
23\data_Position_RMSE_74842.xls, 62976 , 2014-07-04
23\data_SNR_RMSE.xls, 17920 , 2014-05-16
23\data_SNR_RMSE_0519.xls, 17920 , 2014-05-19
23\data_SNR_RMSE_0520.xls, 17920 , 2014-05-20
23\data_SNR_RMSE_0520_a.xls, 17920 , 2014-05-21
23\data_SNR_RMSE_0520_b.xls, 17920 , 2014-05-22
23\data_SNR_RMSE_52216.xls, 17920 , 2014-05-22
23\data_SNR_RMSE_52616.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261643.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261649.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261652.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261655.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261659.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261713.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261716.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261719.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526172.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261723.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261726.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261729.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261733.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261736.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261739.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261743.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261746.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261749.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261753.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261756.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261759.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526176.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526179.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261813.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261816.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261819.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261823.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526183.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526186.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526189.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5291713.xls, 17920 , 2014-05-29
23\data_SNR_RMSE_5291717.xls, 17920 , 2014-05-29
23\data_SNR_RMSE_5291725.xls, 17920 , 2014-05-29
23\dbf_test_1.mat, 451 , 2014-06-16
23\dbf_test_2.mat, 453 , 2014-06-16
23\dbf_test_3.mat, 452 , 2014-06-16
23\Echo_MIMO_PCM.m, 3714 , 2014-04-30
23\echo_pa_hf.m, 7554 , 2014-04-28
23\echo_pcm_static.m, 1786 , 2014-04-21
23\error_alphar2013.m, 5125 , 2014-06-16
23\error_alphat2013.m, 3312 , 2013-06-07
23\error_angle.m, 367 , 2013-06-02
23\error_d.m, 3963 , 2014-06-16
23\error_d2013.m, 6414 , 2014-04-09
23\error_v2013.m, 4177 , 2013-06-08
23\gen_base.m, 2497 , 2014-04-18
23\Gen_st_vector0506.m, 1725 , 2014-04-28
23\Gen_st_vector0524.m, 2123 , 2014-04-28
23\Gen_st_vector_cs.m, 2139 , 2014-05-14
23\hs_err_pid5552.log, 23348 , 1990-05-29
23\main_23.m, 57186 , 2014-06-16
23\main_23_0616.m, 60040 , 2014-07-04
23\matching10.m, 1198 , 2013-06-02
23\matching10_2013.m, 469 , 2014-05-13
23\monoPA.m, 1243 , 2014-05-30
23\monopulse_vec.m, 868 , 2014-05-15
23\multi_par.m, 3395 , 2014-05-30
23\mydata.xls, 17408 , 2014-04-30
23\papc-16-128.mat, 275 , 2013-06-02
23\papc-16-256.mat, 352 , 2013-04-18
23\rdbf.m, 1219 , 2014-06-16
23\rExtract1.m, 594 , 2014-06-16
23\rExtract2.m, 294 , 2013-06-02
23\rExtract20130526.m, 595 , 2013-06-07
23\sigma_thetar.m, 0 , 2014-05-20
23\SNR_RMSE0507.fig, 2702 , 2014-05-07
23\sypc-16-1024.mat, 3583 , 2013-06-02
23\sypc-16-2048.mat, 6959 , 2013-06-02
23\sypc-16-256.mat, 1060 , 2013-06-02
23\Target_Echo_PCM.m, 5266 , 2014-04-21
23\testdata2.xls, 16896 , 2014-04-30
23\transmit_2013.m, 2401 , 2014-05-14
23\t_mtd.m, 707 , 2014-06-16
23, 0 , 2014-07-06

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • KKDZSXX
    扩展卡尔曼滤波与无迹卡尔曼滤波的跟踪滤波性能的比较()
    2020-10-08 14:57:36下载
    积分:1
  • classification_toolbox
    说明:  多种基本分类训练,包括支持向量机,偏最小二乘,主成分分析和线性分析(A variety of basic classification training, including support vector machine, partial least squares, principal component analysis and linear analysis)
    2020-03-10 11:52:41下载
    积分:1
  • 算法
    包含很多知名算法实现,支持向量机,决策树,粗糙集,贝叶斯分类器等,适合学术研究,短评论意见挖掘,文本分类等。
    2022-06-03 05:40:28下载
    积分:1
  • apcluster.m
    ap算法完成ap聚类操作 需要输入参数为数据集 偏向参数 输出结果为聚类数目(The AP algorithm completes the AP clustering operation, the input parameter is the data set bias parameter, and the output result is the number of clusters)
    2017-11-19 23:56:45下载
    积分:1
  • Binning算法
    数据挖掘中的binning算法,用于数据预处理(Binning algorithm in data mining for data preprocessing)
    2019-01-07 09:04:15下载
    积分:1
  • Java实现Apriori算法
    Java实现Apriori数据挖掘算法,包内还有实例用的数据库 Apriori数据挖掘算法:先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递归的方法。 请在jbuilder下编译 配好JDBC驱动 商品如果 买的表示为大写 没买表示为小写的 具体看GetSource.java
    2022-10-02 14:05:03下载
    积分:1
  • 40289243
    这是C语言中的难点的一些算法,其中包括用C实现的班级成绩管理,用C实现的排序算法等()
    2018-01-08 21:27:54下载
    积分:1
  • guanlianguize
    r语言中关联规则代码实现 运用arulesViz包和arules包中的apriori函数(Code Implementation of Association Rule)
    2019-01-24 15:39:51下载
    积分:1
  • kacmp
    google搜索的核心技术,VC++源码实现,包含测试数据库()
    2017-12-03 12:35:44下载
    积分:1
  • piactical__algorithm
    一个很实用的采用Neville算法的拉格朗日插值程序,(A very practical Lagrange interpolation program using Neville algorithm,)
    2018-09-03 22:04:52下载
    积分:1
  • 696518资源总数
  • 104617会员总数
  • 12今日下载