登录
首页 » matlab » classification_toolbox

classification_toolbox

于 2020-03-10 发布
0 215
下载积分: 1 下载次数: 2

代码说明:

说明:  多种基本分类训练,包括支持向量机,偏最小二乘,主成分分析和线性分析(A variety of basic classification training, including support vector machine, partial least squares, principal component analysis and linear analysis)

文件列表:

classification_toolbox_5.2\calc_class_param.m, 3488 , 2018-11-21
classification_toolbox_5.2\calc_class_string.m, 3035 , 2018-12-20
classification_toolbox_5.2\calc_qt_limits.m, 2094 , 2018-11-21
classification_toolbox_5.2\calc_reg_param.m, 1790 , 2018-11-21
classification_toolbox_5.2\cartcv.m, 6467 , 2018-12-04
classification_toolbox_5.2\cartfit.m, 3719 , 2018-12-04
classification_toolbox_5.2\cartpred.m, 2328 , 2018-12-04
classification_toolbox_5.2\class_gui.fig, 46054 , 2018-11-14
classification_toolbox_5.2\class_gui.m, 119168 , 2019-01-08
classification_toolbox_5.2\dacompsel.m, 4696 , 2018-12-04
classification_toolbox_5.2\dacv.m, 8252 , 2018-12-04
classification_toolbox_5.2\dafit.m, 6789 , 2018-12-04
classification_toolbox_5.2\damultinormality.m, 3392 , 2018-11-21
classification_toolbox_5.2\dapred.m, 3786 , 2018-12-04
classification_toolbox_5.2\data_pretreatment.m, 2903 , 2018-12-04
classification_toolbox_5.2\help\classparameters.htm, 8300 , 2018-12-04
classification_toolbox_5.2\help\download.htm, 2182 , 2018-11-11
classification_toolbox_5.2\help\example.htm, 13402 , 2018-12-04
classification_toolbox_5.2\help\example_plsda_01.gif, 11262 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_02.gif, 5246 , 2016-01-29
classification_toolbox_5.2\help\example_plsda_03.gif, 10376 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_04.gif, 15034 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_05.gif, 20139 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_06.gif, 24757 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_07.gif, 26719 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_08.gif, 9991 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_09.gif, 10708 , 2018-11-26
classification_toolbox_5.2\help\example_plsda_10.gif, 8197 , 2016-01-29
classification_toolbox_5.2\help\footer.htm, 586 , 2018-11-11
classification_toolbox_5.2\help\gui.htm, 7698 , 2018-11-26
classification_toolbox_5.2\help\gui_1.gif, 8972 , 2018-11-21
classification_toolbox_5.2\help\gui_2.gif, 8013 , 2016-01-29
classification_toolbox_5.2\help\gui_3.gif, 19682 , 2018-11-21
classification_toolbox_5.2\help\gui_4.gif, 18254 , 2018-11-21
classification_toolbox_5.2\help\gui_5.gif, 37173 , 2016-01-29
classification_toolbox_5.2\help\gui_6.gif, 15792 , 2018-11-21
classification_toolbox_5.2\help\gui_7.gif, 48375 , 2018-11-22
classification_toolbox_5.2\help\gui_8.gif, 38618 , 2018-11-22
classification_toolbox_5.2\help\gui_9.gif, 25954 , 2018-11-22
classification_toolbox_5.2\help\gui_calculate.htm, 15964 , 2018-11-26
classification_toolbox_5.2\help\gui_file.htm, 3731 , 2018-11-21
classification_toolbox_5.2\help\gui_predict.htm, 4709 , 2018-11-21
classification_toolbox_5.2\help\gui_results.htm, 14486 , 2018-12-04
classification_toolbox_5.2\help\gui_view.htm, 6159 , 2018-11-21
classification_toolbox_5.2\help\header.htm, 1104 , 2018-11-21
classification_toolbox_5.2\help\index.htm, 4433 , 2018-11-21
classification_toolbox_5.2\help\license.htm, 3592 , 2018-11-21
classification_toolbox_5.2\help\logo_milano_chemometrics.jpg, 9422 , 2016-01-29
classification_toolbox_5.2\help\math_formula_accuracy.gif, 1195 , 2016-01-29
classification_toolbox_5.2\help\math_formula_confmat.gif, 3146 , 2016-01-29
classification_toolbox_5.2\help\math_formula_er.gif, 646 , 2016-01-29
classification_toolbox_5.2\help\math_formula_ner.gif, 1025 , 2016-01-29
classification_toolbox_5.2\help\math_formula_nk.gif, 616 , 2016-01-29
classification_toolbox_5.2\help\math_formula_precision.gif, 559 , 2016-01-29
classification_toolbox_5.2\help\math_formula_sensitivity.gif, 567 , 2016-01-29
classification_toolbox_5.2\help\math_formula_specificity.gif, 1171 , 2016-01-29
classification_toolbox_5.2\help\math_formula_wilks.gif, 554 , 2016-01-29
classification_toolbox_5.2\help\menu_lateral.htm, 2422 , 2018-11-21
classification_toolbox_5.2\help\references.htm, 5067 , 2018-11-21
classification_toolbox_5.2\help\releases.htm, 9284 , 2018-11-21
classification_toolbox_5.2\help\routines.htm, 7614 , 2018-12-04
classification_toolbox_5.2\help\style_structure.css, 671 , 2016-01-29
classification_toolbox_5.2\help\style_tables.css, 992 , 2016-01-29
classification_toolbox_5.2\help\style_text.css, 2919 , 2016-01-29
classification_toolbox_5.2\help\theory.htm, 21221 , 2018-12-04
classification_toolbox_5.2\help\web.htm, 3655 , 2018-11-11
classification_toolbox_5.2\help.htm, 1116 , 2018-11-22
classification_toolbox_5.2\knnclass.m, 2087 , 2018-11-21
classification_toolbox_5.2\knncv.m, 7771 , 2018-12-04
classification_toolbox_5.2\knnfit.m, 5026 , 2018-12-04
classification_toolbox_5.2\knnksel.m, 4783 , 2018-12-04
classification_toolbox_5.2\knnpred.m, 4446 , 2018-12-04
classification_toolbox_5.2\knn_calc_dist.m, 3841 , 2018-11-21
classification_toolbox_5.2\make_test.m, 3503 , 2018-11-21
classification_toolbox_5.2\mypls.m, 4426 , 2008-10-02
classification_toolbox_5.2\pca_model.m, 3962 , 2018-12-04
classification_toolbox_5.2\pca_project.m, 2564 , 2018-11-21
classification_toolbox_5.2\plsdacompsel.m, 4554 , 2018-12-04
classification_toolbox_5.2\plsdacv.m, 8201 , 2018-12-04
classification_toolbox_5.2\plsdafindclass.m, 1972 , 2018-11-21
classification_toolbox_5.2\plsdafindthr.m, 3236 , 2018-11-21
classification_toolbox_5.2\plsdafit.m, 7931 , 2018-12-04
classification_toolbox_5.2\plsdapred.m, 4254 , 2018-12-04
classification_toolbox_5.2\potcalc.m, 2178 , 2018-11-21
classification_toolbox_5.2\potcv.m, 9456 , 2018-12-04
classification_toolbox_5.2\potfindclass.m, 1993 , 2018-11-21
classification_toolbox_5.2\potfit.m, 5984 , 2018-12-04
classification_toolbox_5.2\potpred.m, 3102 , 2018-12-04
classification_toolbox_5.2\potsmootsel.m, 5634 , 2018-12-04
classification_toolbox_5.2\readme.txt, 3413 , 2018-12-04
classification_toolbox_5.2\redo_scaling.m, 2297 , 2018-11-21
classification_toolbox_5.2\sediment.mat, 107841 , 2018-11-15
classification_toolbox_5.2\simcacompsel.m, 4555 , 2018-12-04
classification_toolbox_5.2\simcacv.m, 8581 , 2019-02-13
classification_toolbox_5.2\simcafindclass.m, 2077 , 2018-11-21
classification_toolbox_5.2\simcafindthr.m, 2720 , 2018-11-21
classification_toolbox_5.2\simcafit.m, 8275 , 2019-02-13
classification_toolbox_5.2\simcapred.m, 4328 , 2019-02-13
classification_toolbox_5.2\svmcostsel.m, 6034 , 2018-12-04
classification_toolbox_5.2\svmcv.m, 8599 , 2018-12-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • 高效用项集算法--HMINE算法
    数据挖掘算法,高效用项集挖掘算法,加权频发项集挖掘算法,HMINE算法,源码中有详细注释
    2022-02-04 07:22:38下载
    积分:1
  • 从零开始学Python网络爬虫源代码+教学PPT
    说明:  《从零开始学爬虫》的配套资料(PPT和源码)("Learning Reptiles from Zero" (PPT and Source))
    2019-03-18 22:06:06下载
    积分:1
  • Python for Data Analysis
    说明:  利用python进行数据分析,英文书籍,从pandas库的数据分析工具开始利用高性能工具对数据进行加载、清理、转换、合并以及重塑;利用matpIotlib创建散点图以及静态或交互式的可视化结果;利用pandas的groupby功能对数据集进行切片、切块和汇总操作;处理各种各样的时间序列数据。(Starting from the data analysis tools of pandas database, high performance tools are used to load, clean, transform, merge and remodel data; scatter plots and static or interactive visualization results are created by matpIotlib; data sets are sliced, sliced and aggregated by pandas group by function; and various operations are processed. Time series data.)
    2020-06-16 03:20:01下载
    积分:1
  • 机器学习实战
    说明:  机器学习实战中文英文pdf+数据集+代码(Practice of machine learning)
    2021-02-21 23:11:22下载
    积分:1
  • rcitime__type
    二进制粒子群优化算法pso,主程序:swarmpso m 它包括以下子程序: 1  初始化:swarminit m 2  适应值计算函()
    2017-12-09 12:19:17下载
    积分:1
  • 频繁项集算法--FPGROWTH算法
    数据挖掘经典算法,频繁项集挖掘经典算法,FPGROWTH算法,源码中有详细说明
    2023-06-08 16:30:03下载
    积分:1
  • qb神经网络
    从数据库获取车辆在一段时间内的所有行驶记录的相关数据,确定所需数据为GPS经纬度坐标和驾驶时长等,QB模型采用MDF的思想,其基本思想为:通过平均直接翻转距离函数定义两条轨迹之间的距离,两条轨迹需要具有相同的经纬度点数,具有相同点数的轨迹最大的优点是对轨迹距离成对计算,且相同轨迹之间具有更高的分辨率,对于轨迹聚类的结果有一定的优化。(Retrieved from the database cars all over a period of time, record the related data, determine the required data for the GPS latitude and longitude coordinates, and the driving time, QB model by adopting the idea of MDF, its basic idea is: flip directly by the average distance function definition of the distance between two trajectories, two tracks will have the same latitude and longitude points, and has the biggest advantages of the same points of trajectory track distance calculation in pairs, and has higher resolution, between the same trajectory for trajectory clustering results have certain optimization.)
    2020-06-23 08:00:01下载
    积分:1
  • LZYSAD
    雷达数据处理的重要模型算法之一,该代码对imm算法的不同参数下进行了详细的仿真,(One of the important model algorithms for radar data processing, the code simulates the IMM algorithm in detail under different parameters.)
    2018-09-06 13:02:17下载
    积分:1
  • GAM
    主要利用R语言进行广义加法模型,进行回归预测(This paper mainly uses R language to carry on the generalized additive model, and carries on the regression forecast)
    2017-11-10 15:43:21下载
    积分:1
  • clegnup-cyclic-prefix
    Random Number Generators随机数生成包括gaussian random number gener(Random Number Generators random number generation includes gaussian random number gene)
    2018-08-03 22:46:10下载
    积分:1
  • 696518资源总数
  • 104607会员总数
  • 44今日下载