登录
首页 » Python » 机器学习实战

机器学习实战

于 2021-02-21 发布
0 412
下载积分: 1 下载次数: 4

代码说明:

说明:  机器学习实战中文英文pdf+数据集+代码(Practice of machine learning)

文件列表:

Machine-Learning-in-Action-master, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.1.py, 2547 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.1.py, 1955 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.2.py, 6095 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.3.py, 2875 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.4.py, 5630 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.2.5.py, 5337 , 2020-02-05
Machine-Learning-in-Action-master\Ch02-KNN\2.3.2.py, 3022 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.2.1-1.py, 2296 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.2.1-2.py, 4861 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.2.2.py, 6980 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.3.py, 13069 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.4.py, 8011 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.5.1.py, 626 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.5.2.py, 518 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.6.2-1.py, 1365 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.6.2-2.py, 1786 , 2020-02-05
Machine-Learning-in-Action-master\Ch03-DecisionTree\3.6.2-3.py, 2320 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.7.1.py, 2622 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.7.2.py, 4272 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.7.3.py, 4387 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.8.1.py, 1801 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.8.2.py, 9564 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.1.py, 1558 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-1.py, 3677 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-2.py, 5510 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-3.py, 7586 , 2020-02-05
Machine-Learning-in-Action-master\Ch04-NaiveBayes\4.9.2-4.py, 7299 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.1.py, 2606 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.2.py, 2460 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.3.py, 4086 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.4.py, 4297 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.4.5.py, 6763 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.5.2-1.py, 3270 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.5.2-2.py, 3076 , 2020-02-05
Machine-Learning-in-Action-master\Ch05-Logistic\5.6.py, 1353 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.3.py, 7623 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.4.py, 11636 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.5.1.py, 1591 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.5.2.py, 13616 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.6.py, 170 , 2020-02-05
Machine-Learning-in-Action-master\Ch06-SVM\6.7.py, 2705 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.3.1.py, 1506 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.3.2.py, 3697 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.4.1.py, 5141 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.4.2.py, 6479 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.5.py, 6291 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.6.py, 1440 , 2020-02-05
Machine-Learning-in-Action-master\Ch07-AdaBoost\7.8.py, 7149 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.2.1.py, 1513 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.2.2.py, 2170 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.2.3.py, 1589 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.3.py, 4174 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.4.py, 4611 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.5.1.py, 3257 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.5.3.py, 4046 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.1.py, 3130 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.2-1.py, 4908 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.2-2.py, 8240 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.6.2-3.py, 6034 , 2020-02-05
Machine-Learning-in-Action-master\Ch08-Regression\8.7.py, 3473 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees, 0 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.3.py, 802 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.1.py, 1205 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.2.py, 3493 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.3.py, 4324 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.4.py, 1429 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.4.5.py, 4323 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.5.1-1.py, 1436 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.5.1-2.py, 4291 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.5.2.py, 7136 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.6.1.py, 1435 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.6.2.py, 5049 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.7.1.py, 1450 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.7.2.py, 6215 , 2020-02-05
Machine-Learning-in-Action-master\Ch09-Regression Trees\9.8.py, 2908 , 2020-02-05
Machine-Learning-in-Action-master\Machine Learning in Action.pdf, 6896910 , 2020-02-05
Machine-Learning-in-Action-master\README.md, 3285 , 2020-02-05
Machine-Learning-in-Action-master\机器学习实战.pdf, 10671473 , 2020-02-05
Machine-Learning-in-Action-master\机器学习实战总目录.md, 2431 , 2020-02-05
Machine-Learning-in-Action-master\机器学习实战数据集.zip, 17370427 , 2020-02-05

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 频繁项集算法--CFPGROWTH算法
    数据挖掘经典算法,频繁项集挖掘经典算法,CFPGROWTH算法,JAVA实现,代码中有详细注释
    2023-03-29 10:25:03下载
    积分:1
  • mocc3
    说明:  
    2018-02-06 13:33:06下载
    积分:1
  • 频繁项集算法
    频繁项集挖掘算法,能在大量局部特征中发现频繁空间配置,这些空间配置可以作为词语,加入到特征包中进行分类,实现图像分类。
    2022-03-23 21:38:47下载
    积分:1
  • pu_ju_lei
    将数据集转换为拉普拉斯矩阵,然后利用基于图论的谱聚类进行聚类。拉普拉斯矩阵采用高斯核函数,全连接方法计算。谱聚类擅长处理高维数据或非凸数据集。(The data set is transformed into Laplacian matrix, and then clustered by spectral clustering based on graph theory. The Laplacian matrix is calculated by using the Gauss kernel function and the full connection method. Spectral clustering is good at dealing with high-dimensional or non-convex data sets.)
    2019-07-01 16:05:39下载
    积分:1
  • 聚类指标小结
    说明:  聚类评价指标的各种说明,非常详细,请仔细阅读。(Cluster evaluation indicators of various descriptions, very detailed.)
    2020-06-19 05:20:01下载
    积分:1
  • ga-svm
    用遗传算法优化支持向量回归机C、g、p参数(Optimization of C, G, P parameters of support vector regression machine by genetic algorithm)
    2018-01-12 19:32:12下载
    积分:1
  • degreeor
    复杂网络聚类系数的matlab编程代码,将复杂网络存储为矩阵,再对其matLab编程,可得到度分布图(The MATLAB programming code of clustering coefficient of complex network is used to store complex network as matrix, and then matLab programming is used to get the degree distribution graph.)
    2018-05-23 05:28:45下载
    积分:1
  • PCA
    说明:  一个用python实现的PCA算法,并且给了简易素材(A PCA algorithm implemented in python, and gave a simple material)
    2020-08-23 14:38:17下载
    积分:1
  • boston_housing
    说明:  采用机器学习预测房价.使用波士顿房屋信息数据来训练和测试一个模型,并对模型的性能和预测能力进行评估。(Using Machine Learning to Predict House Prices)
    2019-10-04 11:48:44下载
    积分:1
  • Tensor-Factorization-HOSVD-iterative-master
    hosvd 迭代分解,很好用,是一个硕士论文里的代码(terative HOSVD algorithm to decompose tensor and find its Singular factors in each mode.)
    2021-03-27 11:39:12下载
    积分:1
  • 696518资源总数
  • 105678会员总数
  • 22今日下载