登录
首页 » matlab » SparseLab200-Core

SparseLab200-Core

于 2010-11-07 发布 文件大小:26949KB
0 105
下载积分: 1 下载次数: 259

代码说明:

  基于多帧图像插值(Interpolation)技术的方法是SR恢复技术当中最直观 的方法。这类方法首先估计各帧图像之间的相对运动信息,获得HR图像在非均 匀间距采样点上的象素值,接着通过非均匀插值得到HR栅格上的象素值,最后 采用图像恢复技术来去除模糊和降低噪声(运动估计!非均匀插值!去模糊和 噪声)。(In this paper, we propose a novel method for solv- ing single-image super-resolution problems. Given a low-resolution image as input, we recover its high- resolution counterpart using a set of training exam- ples. While this formulation resembles other learning- based methods for super-resolution, our method has been inspired by recent manifold learning methods, par- ticularly locally linear embedding (LLE). Speci?cally, small image patches in the low- and high-resolution images form manifolds with similar local geometry in two distinct feature spaces. As in LLE, local geometry is characterized by how a feature vector correspond- ing to a patch can be reconstructed by its neighbors in the feature space. Besides using the training image pairs to estimate the high-resolution embedding, we also enforce local compatibility and smoothness con- straints between patches in the target high-resolution image through overlapping. Experiments show that our method is very ?exible )

文件列表:

SparseLab200-Core
.................\CompSense
.................\.........\CompSense_Elad_IEEETSP.pdf,243852,2006-12-26
.................\.........\CompSense_Fig2.m,551,2007-01-02
.................\.........\CompSense_Fig3.m,3914,2007-01-02
.................\.........\CompSense_Fig4.m,4056,2007-01-02
.................\.........\CompSense_Fig5.m,4056,2007-01-02
.................\.........\CompSense_Fig6.m,6925,2007-01-02
.................\.........\CompSense_Fig7.m,6791,2007-01-02
.................\.........\mulmd.m,168,2007-03-24
.................\Contents.m,2026,2006-07-30
.................\Documentation
.................\.............\AboutSparseLab
.................\.............\..............\AboutSparseLab.aux,2957,2007-03-24
.................\.............\..............\AboutSparseLab.dvi,71888,2007-03-24
.................\.............\..............\AboutSparseLab.log,7765,2007-03-24
.................\.............\..............\AboutSparseLab.pdf,157163,2007-03-24
.................\.............\..............\AboutSparseLab.ps,279181,2007-03-24
.................\.............\..............\AboutSparseLab.tex,43775,2007-03-24
.................\.............\..............\AboutSparseLab.toc,2224,2007-03-24
.................\.............\..............\Contents.m,679,2007-03-24
.................\.............\..............\References.tex,1119,2006-05-06
.................\.............\..............\SparseMacros.tex,1628,2007-03-24
.................\.............\ADDINGNEWFEATURES.m,245,2006-07-30
.................\.............\BUGREPORT.m,245,2006-07-30
.................\.............\Contents.m,1537,2007-03-24
.................\.............\COPYING.m,245,2006-07-30
.................\.............\DATASTRUCTURES.m,692,2006-07-30
.................\.............\FEEDBACK.m,657,2006-07-30
.................\.............\GETTINGSTARTED.m,825,2006-07-30
.................\.............\INSTALLATION.m,10967,2006-07-30
.................\.............\LIMITATIONS.m,335,2006-07-30
.................\.............\PAYMENT.m,884,2006-07-30
.................\.............\REGISTRATION.m,723,2006-07-30
.................\.............\SparseLabArchitecture
.................\.............\.....................\Contents.m,760,2007-03-24
.................\.............\.....................\SparseArch.aux,5011,2007-03-24
.................\.............\.....................\SparseArch.dvi,50040,2007-03-24
.................\.............\.....................\SparseArch.log,14716,2007-03-24
.................\.............\.....................\SparseArch.pdf,143163,2007-03-24
.................\.............\.....................\SparseArch.ps,230345,2007-03-24
.................\.............\.....................\SparseArch.tex,37761,2007-03-24
.................\.............\.....................\SparseMacros.tex,1627,2007-03-24
.................\.............\SUPPORT.m,810,2006-07-30
.................\.............\THANKS.m,938,2006-07-30
.................\.............\VERSION.m,266,2006-07-30
.................\.............\WARRANTY.m,1356,2006-07-30
.................\Examples
.................\........\Contents.m,699,2007-03-24
.................\........\nnfEx
.................\........\.....\Contents.m,754,2006-07-30
.................\........\.....\FastOp.m,585,2006-07-30
.................\........\.....\NNF.m,1245,2006-07-30
.................\........\.....\SolveIterSoftThresh.m,1939,2006-07-30
.................\........\reconstructionEx
.................\........\................\Contents.m,798,2006-07-30
.................\........\................\FastOp.m,493,2006-07-30
.................\........\................\FastOpLS.m,454,2006-07-30
.................\........\................\Reconstruction.m,916,2006-07-30
.................\........\................\TransformSparsify.m,1157,2006-07-30
.................\........\RegEx
.................\........\.....\Contents.m,1247,2006-07-30
.................\........\.....\RegEx.m,744,2006-07-30
.................\........\.....\RegEx01.m,716,2006-07-30
.................\........\.....\RegEx02.m,791,2006-07-30
.................\........\.....\RegEx03.m,723,2006-07-30
.................\........\.....\RegEx04.m,749,2006-07-30
.................\........\.....\RegExShowAllFigs.m,390,2006-07-30
.................\........\TFDecompEx
.................\........\..........\Contents.m,748,2006-07-30
.................\........\..........\RST.m,424,2006-07-30
.................\........\..........\RSTMatrix.m,320,2006-07-30
.................\........\..........\TFDecompEX.m,1878,2006-07-30
.................\Papers
.................\......\Contents.m,1693,2007-03-24
.................\......\ExtCS
.................\......\.....\Contents.m,677,2006-07-30
.................\......\.....\ExtCS.pdf,864638,2006-05-01
.................\......\.....\ExtCSDemo
.................\......\.....\.........\Contents.m,1041,2006-07-30
.................\......\.....\.........\ExtCSDemo.m,11692,2006-07-30
.................\......\.....\.........\ExtCSFig.m,1234,2006-07-30
.................\......\.....\.........\ExtCSInit.m,250,2006-07-30
.................\......\.....\.........\ExtCSIntro.m,250,2006-07-30
.................\......\.....\.........\ExtCSPath.m,541,2006-07-30
.................\......\.....\.........\GenData
.................\......\.....\.........\.......\BoundData1.mat,23808,2005-05-30
.................\......\.....\.........\.......\BoundData2.mat,83616,2005-05-30
.................\......\.....\.........\.......\BoundDataFourier.mat,7864,2005-05-30
.................\......\.....\.........\.......\BoundDataHadamard.mat,7864,2005-05-30
.................\......\.....\.........\.......\BoundDataSigns.mat,7864,2005-05-30
.................\......\.....\.........\.......\BoundDataUniform.mat,7864,2005-05-30
.................\......\.....\.........\.......\Contents.m,1649,2006-07-30
.................\......\.....\.........\.......\CpVec.mat,504,2005-05-30
.................\......\.....\.........\.......\DataL0_100.mat,664,2005-05-30
.................\......\.....\.........\.......\DataL0_20.mat,664,2005-05-30
.................\......\.....\.........\.......\DataL0_50.mat,664,2005-05-30
.................\......\.....\.........\.......\GenBoundData1.m,1279,2006-07-30
.................\......\.....\.........\.......\GenBoundData2.m,1218,2006-07-30
.................\......\.....\.........\.......\GenBoundDataFourier.m,1590,2006-07-30

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Bregman
    把分裂Bregman方法运用到图像处理中,发现这种方法比以前去模糊方法要好很多。(To split Bregman method applied to image processing, and found that this method defuzzification method is much better than before.)
    2013-03-31 22:42:24下载
    积分:1
  • rice
    对低质量图像分割和计数,以大米照片为例。(Of low-quality image segmentation and counting to rice as an example photo.)
    2008-01-13 12:26:30下载
    积分:1
  • HillClimbingSegment.1.0
    程序实现Matlab下爬山法(hill-climbing)方法,用于彩色图像分割。(mage is first converted to CIE lab color space and the 3d color histogram is generated. Hill-climbing algorithm is used to find the local maximums in lab histogram, which is used to automatically decide the cluster number K as well as initial seeds for )
    2009-06-09 18:27:49下载
    积分:1
  • deeplab_v3-master
    训练了一个CNN模型用于土地资源分类,适用于遥感图像(A CNN model is trained for land use classification and is suitable for remote sensing images.)
    2018-09-18 15:43:48下载
    积分:1
  • Jsteg
    基于DCT的jsteg图像隐写及分析算法,MATLAB实现。 JSteg的算法主要思想是将秘密消息嵌入在量化后的DCT系数的最低比特位上,但对原始值为O、1的DCT系数不进行嵌入。提取秘密消息时,只需将载密图像中不等于0、l的量化DcT系数的LSB取出即可。(The main idea of the JSteg algorithm is to embed secret messages in the lowest bit of the quantized DCT coefficients, but the DCT coefficients of the original values are O and 1 are not embedded. When extracting secret messages, only the LSB of the quantized DCT coefficients not equal to 0 and l in the encrypted image can be taken out.)
    2021-04-19 23:48:51下载
    积分:1
  • PCaK-means
    基于相位一致性与K-means方法的结合边缘检测(PC and K-means)
    2020-12-05 03:09:24下载
    积分:1
  • MATLABchengxu
    说明:  这个源程序的主要功能是实现图像基于拉普拉斯金字塔的图像融合(The primary function of the source image is Laplacian pyramid-based image fusion)
    2009-07-27 10:18:23下载
    积分:1
  • ExThreshold
    1、读取显示所给PET图像(SE2IM210)。 2、学习imhist函数,画出所给PET图像的直方图。 3、根据直方图为该PET图像选择合适的显示窗(imshow参数),使胸 部轮廓等解剖结构可见。 4、根据直方图选择合适阈值,分割肿瘤区域与正常区域,计算肿瘤区 域内图像灰度均值、方差、最大值及最小值。(1 give PET images displayed, read (SE2 IM210). 2, learning, imhist function, draw the give PET image histogram. 3, according to the histogram for the PET image to choose the appropriate display window (imshow parameters), make bosom Outline of anatomical structures such as visible. 4, according to the histogram, choose appropriate threshold segmentation tumor area and normal area, calculating the tumor area In the domain of image grayscale average and variance, the maximum and minimum values.)
    2015-05-08 20:52:11下载
    积分:1
  • Tvandpde
    这是一个有界差分方法进行分割的例子,对于学习数学图像处理的同学,有启发作用(This is a difference method has industry segmentation example, for image processing mathematics students, has inspired the role of)
    2007-07-27 10:16:40下载
    积分:1
  • gauss-noise
    高斯有色噪声,有色噪声的谱估计及其在雷达中的应用(gauss noise)
    2012-11-21 19:17:31下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载