登录
首页 » matlab » SparseLab200-Core

SparseLab200-Core

于 2010-11-07 发布 文件大小:26949KB
0 126
下载积分: 1 下载次数: 259

代码说明:

  基于多帧图像插值(Interpolation)技术的方法是SR恢复技术当中最直观 的方法。这类方法首先估计各帧图像之间的相对运动信息,获得HR图像在非均 匀间距采样点上的象素值,接着通过非均匀插值得到HR栅格上的象素值,最后 采用图像恢复技术来去除模糊和降低噪声(运动估计!非均匀插值!去模糊和 噪声)。(In this paper, we propose a novel method for solv- ing single-image super-resolution problems. Given a low-resolution image as input, we recover its high- resolution counterpart using a set of training exam- ples. While this formulation resembles other learning- based methods for super-resolution, our method has been inspired by recent manifold learning methods, par- ticularly locally linear embedding (LLE). Speci?cally, small image patches in the low- and high-resolution images form manifolds with similar local geometry in two distinct feature spaces. As in LLE, local geometry is characterized by how a feature vector correspond- ing to a patch can be reconstructed by its neighbors in the feature space. Besides using the training image pairs to estimate the high-resolution embedding, we also enforce local compatibility and smoothness con- straints between patches in the target high-resolution image through overlapping. Experiments show that our method is very ?exible )

文件列表:

SparseLab200-Core
.................\CompSense
.................\.........\CompSense_Elad_IEEETSP.pdf,243852,2006-12-26
.................\.........\CompSense_Fig2.m,551,2007-01-02
.................\.........\CompSense_Fig3.m,3914,2007-01-02
.................\.........\CompSense_Fig4.m,4056,2007-01-02
.................\.........\CompSense_Fig5.m,4056,2007-01-02
.................\.........\CompSense_Fig6.m,6925,2007-01-02
.................\.........\CompSense_Fig7.m,6791,2007-01-02
.................\.........\mulmd.m,168,2007-03-24
.................\Contents.m,2026,2006-07-30
.................\Documentation
.................\.............\AboutSparseLab
.................\.............\..............\AboutSparseLab.aux,2957,2007-03-24
.................\.............\..............\AboutSparseLab.dvi,71888,2007-03-24
.................\.............\..............\AboutSparseLab.log,7765,2007-03-24
.................\.............\..............\AboutSparseLab.pdf,157163,2007-03-24
.................\.............\..............\AboutSparseLab.ps,279181,2007-03-24
.................\.............\..............\AboutSparseLab.tex,43775,2007-03-24
.................\.............\..............\AboutSparseLab.toc,2224,2007-03-24
.................\.............\..............\Contents.m,679,2007-03-24
.................\.............\..............\References.tex,1119,2006-05-06
.................\.............\..............\SparseMacros.tex,1628,2007-03-24
.................\.............\ADDINGNEWFEATURES.m,245,2006-07-30
.................\.............\BUGREPORT.m,245,2006-07-30
.................\.............\Contents.m,1537,2007-03-24
.................\.............\COPYING.m,245,2006-07-30
.................\.............\DATASTRUCTURES.m,692,2006-07-30
.................\.............\FEEDBACK.m,657,2006-07-30
.................\.............\GETTINGSTARTED.m,825,2006-07-30
.................\.............\INSTALLATION.m,10967,2006-07-30
.................\.............\LIMITATIONS.m,335,2006-07-30
.................\.............\PAYMENT.m,884,2006-07-30
.................\.............\REGISTRATION.m,723,2006-07-30
.................\.............\SparseLabArchitecture
.................\.............\.....................\Contents.m,760,2007-03-24
.................\.............\.....................\SparseArch.aux,5011,2007-03-24
.................\.............\.....................\SparseArch.dvi,50040,2007-03-24
.................\.............\.....................\SparseArch.log,14716,2007-03-24
.................\.............\.....................\SparseArch.pdf,143163,2007-03-24
.................\.............\.....................\SparseArch.ps,230345,2007-03-24
.................\.............\.....................\SparseArch.tex,37761,2007-03-24
.................\.............\.....................\SparseMacros.tex,1627,2007-03-24
.................\.............\SUPPORT.m,810,2006-07-30
.................\.............\THANKS.m,938,2006-07-30
.................\.............\VERSION.m,266,2006-07-30
.................\.............\WARRANTY.m,1356,2006-07-30
.................\Examples
.................\........\Contents.m,699,2007-03-24
.................\........\nnfEx
.................\........\.....\Contents.m,754,2006-07-30
.................\........\.....\FastOp.m,585,2006-07-30
.................\........\.....\NNF.m,1245,2006-07-30
.................\........\.....\SolveIterSoftThresh.m,1939,2006-07-30
.................\........\reconstructionEx
.................\........\................\Contents.m,798,2006-07-30
.................\........\................\FastOp.m,493,2006-07-30
.................\........\................\FastOpLS.m,454,2006-07-30
.................\........\................\Reconstruction.m,916,2006-07-30
.................\........\................\TransformSparsify.m,1157,2006-07-30
.................\........\RegEx
.................\........\.....\Contents.m,1247,2006-07-30
.................\........\.....\RegEx.m,744,2006-07-30
.................\........\.....\RegEx01.m,716,2006-07-30
.................\........\.....\RegEx02.m,791,2006-07-30
.................\........\.....\RegEx03.m,723,2006-07-30
.................\........\.....\RegEx04.m,749,2006-07-30
.................\........\.....\RegExShowAllFigs.m,390,2006-07-30
.................\........\TFDecompEx
.................\........\..........\Contents.m,748,2006-07-30
.................\........\..........\RST.m,424,2006-07-30
.................\........\..........\RSTMatrix.m,320,2006-07-30
.................\........\..........\TFDecompEX.m,1878,2006-07-30
.................\Papers
.................\......\Contents.m,1693,2007-03-24
.................\......\ExtCS
.................\......\.....\Contents.m,677,2006-07-30
.................\......\.....\ExtCS.pdf,864638,2006-05-01
.................\......\.....\ExtCSDemo
.................\......\.....\.........\Contents.m,1041,2006-07-30
.................\......\.....\.........\ExtCSDemo.m,11692,2006-07-30
.................\......\.....\.........\ExtCSFig.m,1234,2006-07-30
.................\......\.....\.........\ExtCSInit.m,250,2006-07-30
.................\......\.....\.........\ExtCSIntro.m,250,2006-07-30
.................\......\.....\.........\ExtCSPath.m,541,2006-07-30
.................\......\.....\.........\GenData
.................\......\.....\.........\.......\BoundData1.mat,23808,2005-05-30
.................\......\.....\.........\.......\BoundData2.mat,83616,2005-05-30
.................\......\.....\.........\.......\BoundDataFourier.mat,7864,2005-05-30
.................\......\.....\.........\.......\BoundDataHadamard.mat,7864,2005-05-30
.................\......\.....\.........\.......\BoundDataSigns.mat,7864,2005-05-30
.................\......\.....\.........\.......\BoundDataUniform.mat,7864,2005-05-30
.................\......\.....\.........\.......\Contents.m,1649,2006-07-30
.................\......\.....\.........\.......\CpVec.mat,504,2005-05-30
.................\......\.....\.........\.......\DataL0_100.mat,664,2005-05-30
.................\......\.....\.........\.......\DataL0_20.mat,664,2005-05-30
.................\......\.....\.........\.......\DataL0_50.mat,664,2005-05-30
.................\......\.....\.........\.......\GenBoundData1.m,1279,2006-07-30
.................\......\.....\.........\.......\GenBoundData2.m,1218,2006-07-30
.................\......\.....\.........\.......\GenBoundDataFourier.m,1590,2006-07-30

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • FaceNormalization
    这是一种很强的人脸检测程序,你可以试试,但我也不知是用什么方法。(This is a very strong face detection process, you can try, but I do not know in what ways.)
    2007-12-06 09:17:17下载
    积分:1
  • close all
    说明:  小波变化是对傅里叶变换和短时傅里叶变换的一个突破,其改变就在于,将无限长的三角函数基换成了有限长的会衰减的小波。(Wavelet transform is a breakthrough of Fourier transform and short-time Fourier transform. Its change lies in that the infinite trigonometric function base is replaced by the finite attenuation wavelet.)
    2020-06-26 16:29:04下载
    积分:1
  • 第四次作业
    说明:  1.使用medfilt2函数对‘lena.bmp’进行不同模板大小的中值滤波,并观察效果 2.使用fspecial函数构造‘gaussian’, ‘sobel’, ‘prewitt’, ‘laplacian’, ‘average’等不同滤波算子,使用filter2函数对‘cameraman.tif ’进行滤波,观察不同滤波器的效果 3.设计频域理想低通和理想高通滤波器,对‘phantom.bmp’图像进行频域滤波,显示滤波结果。然后改变截止频率,观察对结果的影响。 4.对‘homo.bmp’进行同态滤波,其中频域同态滤波器自行设计。要求在程序注释中说明你设计该滤波器的思想。(1' lena.bmp 'The median filtering with different template sizes was carried out and the effect was observed2. Fsspecial function is used to construct different filter operators such as' Gaussian ',' Sobel ',' Prewitt ',' Laplacian ',' average ', etc' cameraman.tif 'Filter and observe the effect of different filters3. Design ideal low pass and ideal high pass filters in frequency domain' phantom.bmp 'The image is filtered in frequency domain and the filtering result is displayed. Then change the cut-off frequency and observe the effect on the results.4. Yes' homo.bmp 'The homomorphic filter is designed by ourselves. The idea of designing the filter should be explained in the program notes.)
    2020-12-11 21:53:25下载
    积分:1
  • shearletnew
    改进的剪切波变换,用于图像处理,分解层数多,运行速度快(Improved shear wave transform for image processing, decomposition of many layers, fast running speed)
    2017-08-14 09:05:56下载
    积分:1
  • frft_candon
    离散分数阶傅立叶变换,算法参考 C. Candan, M.A. Kutay, and H.M. Ozaktas. The discrete Fractional Fourier Transform. IEEE Trans. Sig. Proc., 48:1329--1337, 2000 (Discrete fractional Fourier transform algorithm reference C. Candan, MA Kutay, and HM Ozaktas. The discrete Fractional Fourier Transform. IEEE Trans. Sig. Proc., 48:1329- 1337, 2000)
    2013-10-23 18:27:29下载
    积分:1
  • 灰度的盲复原问题进行了一些研究 PSF
    本文针对灰度图像的盲复原问题进行了一些研究,介绍了两种不同的图像盲复 原处理的方法。一种是误差一参数分析法,该方法适合于辨识可以用参数来表征的 点扩散函数,如线性移动模型和Gauss模型等,然后根据估计的参数确定退化图像 的点扩’散函数,再利用常规的复原算法(如维纳滤波法)对退化图像进行复原处理 另一种是非负支撑域约束递归逆滤波(NAS-R工F)算法,文中介绍了NAS-R工F算法 的基本思想,并结合正则化的思想,提出了NAS-RIF的改进算法,相应对该算法的 性能效果进行了仿真分析。 1.图像去噪MATLAB仿真程序.m 2.图像点扩展函数获取MATLAB仿真程序.m 3.约束最小二乘法图像复原MATLAB仿真程序.m()
    2020-11-09 12:59:46下载
    积分:1
  • two
    :植物种类识别方法主要是根据叶片低维特征进行自动化鉴定。然而,低维特征不能全面描述叶片信息,识别准确率低,本文提 出一种基于多特征降维的植物叶片识别方法。首先通过数字图像处理技术对植物叶片彩色样本图像进行预处理,获得去除颜色、虫洞、 叶柄和背景的叶片二值图像、灰度图像和纹理图像。然后对二值图像提取几何特征和结构特征,对灰度图像提取 Hu不变矩特征、灰 度共生矩阵特征、局部二值模式特征和 Gabor 特征,对纹理图像提取分形维数,共得到 2183 维特征参数。再采用主成分分析与线性 评判分析相结合的方法对叶片多特征进行特征降维,将叶片高维特征数据降到低维空间。使用降维后的训练样本特征数据对支持向量 机分类器进行训练(plant species identification method is mainly based on blade automatic identification of low dimensional characteristics.However, can not fully describe blade low-dimensional feature information, identification accuracy is low, in this paper A kind of plant leaves recognition method based on multiple feature dimension reduction.First by digital image processing technology to the plant leaf color sample image preprocessing, obtain background color removal, wormhole, petioles, and the blades of a binary image, gray image and texture image.Then the binary image to extract the geometric characteristics and characteristics of structure and characteristics of gray image extraction Hu moment invariants, gray co-occurrence matrix feature, local binary pattern features and Gabor, to extract the fractal dimension of texture image, get 2183 d characteristic parameters.By principal component analysis and linear uation analysis method of combining the characteristics of blade more feature dimensi)
    2017-02-28 09:57:50下载
    积分:1
  • DMC2C80-V1.1
    VC development motion control routines, vb development 12 axis motion control routines
    2013-12-08 21:55:18下载
    积分:1
  • Burch
    burch型全息图,经测试能正常运行,结果含原图,全息图,再现图(Burch-type hologram, by testing the normal operation, the result with image, hologram, reproduce Figure)
    2008-07-07 11:37:46下载
    积分:1
  • otsu
    可以去除不均匀光照、噪声的预处理算法,利用双边滤波和中值滤波的优势。(You can remove the uneven illumination, noise preprocessing algorithm, taking advantage of bilateral filtering and median filtering.)
    2020-11-04 16:29:51下载
    积分:1
  • 696518资源总数
  • 104737会员总数
  • 20今日下载