Vehicle Dynamics Theory and Application
不错的汽车动力学教材,是参与汽车底盘电子开发的动力学基础。Reza n. jazarVehicle DynamicsTheory and ApplicationsSpringerReza n. jazarDept of Mechanical EngineeringManhattan collegeRiverdale. NY 10471ISBN:978-0-387-74243-4e-ISBN:978-0-387-74244-1Library of Congress Control Number: 200794219c 2008 Springer Science+ Business Media, LLCAll rights reserved. This work may not be translated or copied in whole or in part without thewritten permission of the publisher(Springer Science+Business Media, LLC, 233 SpringStreet, New York, NY 10013, USA), except for brief excerpts in connection with reviews orscholarly analysis. Use in connection with any form of information storage and retrievalelectronic adaptation, computer software, or by similar or dissimilar methodology now knownor hereafter developed is forbidden. The use in this publication of trade names, trademarksservice marks and similar terms, even if they are not identified as such, is not to be taken as anexpression of opinion as to whether or not they are subject to proprietary rightsPrinted on acid-free paper987654321springer. comKavoshmy daughter, Vazan,and my wife, MojganHappiness is when you win a race against yourselfPrefaceThis text is for engineering students. It introduces the fundamental knowledge used in vehicle dymamics. This knowledge can be utilized to developcomputer programs for analyzing the ride, handling, and optimization ofroad vehiclesVehicle dynamics has been in the engineering curriculum for more thana hundred years. Books on the subject are available, but most of themare written for specialists and are not suitable for a classroom applicationA new student, engineer, or researcher would not know where and howto start learning vehicle dynamics. So, there is a need for a textbook forbeginners. This textbook presents the fundamentals with a perspective onfuture trendsThe study of classical vehicle dynamics has its roots in the work ofgreat scientists of the past four centuries and creative engineers in thepast century who established the methodology of dynamic systems. Thedevelopment of vehicle dynamics has moved toward modeling, analysisand optimization of multi-body dynamics supported by some compliantmembers. Therefore, merging dynamics with optimization theory was anexpected development. The fast-growing capability of accurate positioninsensing, and calculations, along with intelligent computer programming arethe other important developments in vehicle dynamics. So, a textbook helpthe reader to make a computer model of vehicles, which this book doesLevel of the bookThis book has evolved from nearly a decade of research in nonlineardynamic systems and teaching courses in vehicle dynamics. It is addressedprimarily to the last year of undergraduate study and the first year graduatestudent in engineering. Hence, it is an intermediate textbook. It providesboth fundamental and advanced topics. The whole book can be coveredin two successive courses, however, it is possible to jump over some sections and cover the book in one course. Students are required to know thefundamentals of kinematics and dynamics, as well as a basic knowledge ofnumerical methodsThe contents of the book have been kept at a fairly theoretical-practicallevel. Many concepts are deeply explained and their application empha-sized, and most of the related theories and formal proofs have been explained. The book places a strong emphasis on the physical meaning andapplications of the concepts. Topics that have been selected are of highinterest in the field. An attempt has been made to expose students to aPrefacebroad range of topics and approachese There are four special chapters that are indirectly related to vehicle dy-amics: Applied Kinematics, Applied Mechanisms, Applied dynamics, andApplied vibrations. These chapters provide the related background to understand vehicle dynamics and its subsystemsOrganization of the bookThe text is organized so it can be used for teaching or for self-studyChapter 1"Fundamentals, "contains general preliminaries about tire andrim with a brief review of road vehicle classificationsPart I"One Dimensional Vehicle Dynamics, " presents forward vehicledynamics, tire dynamics, and driveline dynamics. Forward dynamics refersto weight transfer, accelerating braking, engine performance, and gear ratiodesignPart II"Vehicle Kinematics, presents a detailed discussion of vehiclemechanical subsystems such as steering and suspensionsPart IIT"Vehicle Dynamics, employs Newton and Lagrange methodsto develop the maneuvering dynamics of vehiclesPart Iv "Vehicle Vibrations, presents a detailed discussion of vehi-cle vibrations. An attempt is made to review the basic approaches anddemonstrate how a vehicle can be modeled as a vibrating multiple degreeof-freedom system. The concepts of the Newton-Euler dynamics and La-grangian method are used equally for derivation of equations of motionThe RMS optimization technique for suspension design of vehicles is intro-duced and applied to vehicle suspensions. The outcome of the optimizationtechnique is the optimal stiffness and damping for a car or suspended equipmentMethod of presentationThis book uses a fact-reason-application"structure. The "fact"is themain subject we introduce in each section. Then the reason is given as a" proof. The application of the fact is examined in some examples. Theexamplesare a very important part of the book because they show howto implement the facts. They also cover some other facts that are neededto expand the subjectPrerequisitesSince the book is written for senior undergraduate and first-year graduatelevel students of engineering, the assumption is that users are familiar withmatrix algebra as well as basic dynamics. Prerequisites are the fundamentals of kinematics, dynamics, vector analysis, and matrix theory. Thesebasics are usually taught in the first three undergraduate yearsPrefaceUnit SystemThe system of units adopted in this book is, unless otherwise stated, theinternational system of units(SI). The units of degree(deg)or radian(rad)are utilized for variables representing angular quantitiesSymbolse Lowercase bold letters indicate a vector. Vectors may be expressed inan n dimensional Euclidian space. ExamplerCUppercase bold letters indicate a dynamic vector or a dynamic matrix, such as force and moment. ExampleFo Lowercase letters with a hat indicate a unit vector. Unit vectors arenot bolded. ExampleLowercase letters with a tilde indicate a 3 x 3 skew symmetric matrixassociated to a vector. Examplea3211An arrow above two uppercase letters indicates the start and endpoints of a position vector. ExampleON = a position vector from point o to point Ne The length of a vector is indicated by a non-bold lowercase letterExampleCapital letter B is utilized to denote a body coordinate frame. ExampleB(ocgB(Oxyz)B1(o1x19121)ⅹ11PrefaceCapital letter G is utilized to denote a global, inertial, or fixed coordinate frame. ExampleG(XYZG(OXYZRight subscript on a transformation matrix indicates the departureframes. ExampleRB= transformation matrix from frame B(oxyz)Left superscript on a transformation matrix indicates the destinationframe. ExampleRBtransformation matrix from frame B(o cgz)to frame G(OxYZ)Capital letter R indicates rotation or a transformation matrix, if itshows the beginning and destination coordinate frames. Example0BSIn a0Whenever there is no sub or superscript, the matrices are shown in abracket. ExampleCOS asin a osIn aCOs O0e Left superscript on a vector denotes the frame in which the vectoris expressed. That superscript indicates the frame that the vectorbelongs to; so the vector is expressed using the unit vectors of thatEr= position vector expressed in frame G(OXYZ)Right subscript on a vector denotes the tip point that the vector isreferred to. ExamplePsition vector ofexpressed in coordinate frame G(OXYZ)Right subscript on an angular velocity vector indicates the frame thatthe angular vector is referred to. ExampleB= angularof the body coordinate frame B(oxyz)
- 2020-12-12下载
- 积分:1
经典-SIwave中文培训手册.pdf
高性能PCB 的SI/PI 和EMI/EMC 仿真设计ANSOFa subsidiary efIPCB信号完整性甩源完整性和EM分析培训手册是瞬时,也就是瞬态情况下的阻抗:++++++++这个阻抗是传输线本身的物理结构决定的,一般会设计成50欧姆,这是在微波的发展过程中逐渐形成的。射频电缆特性阻抗在70多欧姆左右吋,传输损耗最小;在30多欧姆吋,承受功率最大。两者综合,选择50欧姆,同时照呗到两种性能,所以就选择了50欧姆作为一个标准。如果外接的阻抗冋特征阻抗不一致,就会产生反射2.3反射系数和信号反射当传输线的传播的信号到达某个阻抗不连续的节点时,信号会发生反射,就像水流通过不同∏径的管道接∏时,水面产生波动样。根据反射电压和入射电压的比值,可以定义传输线上的反射系数F。R-Z.R,+z当负载阻抗大于输入阻抗,反射系数r>0,反射信号与入射信号同向叠加:当负载阻抗小于输入阻抗,反射系数r pour manager中进行 Plane connect和 Hatch的操作,如下图所示:u Pour ManagerFlood Hatch (lane Connect lInternalPlane1elect点Internalplant1 Confirm Connect O perationStart close[邮卫。[H8PCB信号完整性/电源完整性和EM分析培训手册ANSOFTsubsIdiary ef ANRY, las,haI■u Pour ManagerFlood Hatch) lane Connect IHatch Mode8Hach点Fast hatch匚cx匚se.匚世p接下来,需要在菜单的too-> option->Sp| it/Mixed plane设置中,对 Save to pcb file栏选择 All plane data选项。如下图所示:optionsDrafting Grids < split / Mixed Plene>L Die Component via PatterSave to pcB filtMixed plane display○ Plane polygon outline○ Plane polygon outlines斗 plane data→ed plane dating radius:0.00凸ar ate gap:日Automatic actionsRvIRCreate cutouts around embedded platLanHelp设置好此项后,在菜单中运行File-> Export,选择*.asc文件的路径和名称后,弹出以下对话框:
- 2020-12-09下载
- 积分:1