登录
首页 » matlab » 聚类指标小结

聚类指标小结

于 2020-06-19 发布
0 184
下载积分: 1 下载次数: 9

代码说明:

说明:  聚类评价指标的各种说明,非常详细,请仔细阅读。(Cluster evaluation indicators of various descriptions, very detailed.)

文件列表:

聚类指标小结\EvaluationCalculate\references.txt, 497 , 2016-11-11
聚类指标小结\EvaluationCalculate\self_Evaluation.m, 2981 , 2016-11-11
聚类指标小结\EvaluationCalculate\test_Evaluation.m, 294 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering.htm, 32222 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\contents.png, 278 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\footnote.png, 190 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1191.png, 230 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1393.png, 9255 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1394.png, 1402 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1395.png, 674 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1396.png, 264 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1397.png, 250 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1398.png, 1446 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1399.png, 205 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1400.png, 446 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1401.png, 1642 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1402.png, 1479 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1403.png, 406 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1404.png, 381 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1405.png, 508 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1406.png, 410 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1407.png, 937 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1408.png, 852 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1409.png, 451 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1410.png, 362 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1411.png, 349 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1412.png, 750 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1413.png, 411 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1414.png, 389 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1415.png, 543 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1416.png, 926 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1417.png, 347 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1418.png, 1536 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1419.png, 154 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1420.png, 1729 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1421.png, 556 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1422.png, 284 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1423.png, 266 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1424.png, 379 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1425.png, 407 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1426.png, 392 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1427.png, 399 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1428.png, 248 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1429.png, 1123 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1430.png, 1694 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1431.png, 554 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1432.png, 656 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1433.png, 460 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1434.png, 498 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img1435.png, 216 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img313.png, 128 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img317.png, 251 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img354.png, 216 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img521.png, 302 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img527.png, 330 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img529.png, 329 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img62.png, 258 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\img855.png, 578 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\index.png, 246 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\irbook.htm, 315 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\next.png, 245 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\prev.png, 279 , 2016-11-11
聚类指标小结\[1] Evaluation of clustering_files\up.png, 211 , 2016-11-11
聚类指标小结\[2] 聚类评价指标 Rand Index,RI,Recall,Precision,F1 - lixuemei504的专栏 - 博客频道 - CSDN.NET.htm, 42996 , 2016-11-11
聚类指标小结\[3] 聚类的一些评价手段 - luoleicn的专栏 - 博客频道 - CSDN.NET.htm, 46837 , 2016-11-11
聚类指标小结\[4] 聚类结果的评估指标及其JAVA实现 - 一个人漫步走 - 博客频道 - CSDN.NET.htm, 64456 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客.htm, 200939 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\0.gif, 693 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\0.jpg, 22385 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\005uWm1Tjw8f25vhkymvnj313k13kq6q.jpg, 1441 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\0_002.jpg, 13359 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\1.jpg, 2656 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\100.jpg, 3513 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\100_002.jpg, 5543 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\11.swf, 2465 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\117X12px.gif, 1160 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\145686.jpg, 4870 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\1_002.jpg, 1475 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\20130808110619562.jpg, 3253 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\20130808110942546.jpg, 3412 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\20131207154559265.jpg, 2828 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\276304.jpg, 2283 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\276624.jpg, 1634 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\3ffda9c9gw1etm69r812dj205k05kdg5.jpg, 1839 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\50.jpg, 2158 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\50_002.jpg, 1384 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\50_003.jpg, 1686 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\50_004.jpg, 1930 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\63392b03jw8eqrx5uilwlj20v90v7whp.jpg, 1429 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\a.htm, 108 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\alipay.png, 22874 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\bootstrap.css, 99554 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\bootstrap.js, 27828 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\btn-index.png, 3283 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\core.php, 2640 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\default.css, 2352 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\embed.css, 54355 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\embed.js, 63708 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\h.js, 22225 , 2016-11-11
聚类指标小结\[5] 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) _ 书影博客_files\highlight.js, 30174 , 2016-11-11

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 朴素贝叶斯分类
    朴素贝叶斯分类的分类器实现,使用的是matlab语言。内含测试集和训练集,可直接运行,readme.txt文件中说明了数据格式
    2022-02-07 02:48:39下载
    积分:1
  • kaggle叶子分类
    利用一维卷积神经网络将叶子进行分类,里面包含的有数据(Classification of leaves using one dimensional convolution neural network)
    2018-07-12 20:41:43下载
    积分:1
  • 0056764
    这是一本经典数值算法书,包含多种算法的理论,为编程者具有一定参考意义()
    2018-05-25 16:07:55下载
    积分:1
  • 从零开始学Python网络爬虫源代码+教学PPT
    《从零开始学爬虫》的配套资料(PPT和源码)("Learning Reptiles from Zero" (PPT and Source))
    2019-03-18 22:06:06下载
    积分:1
  • 77257795PCA_yuandaima
    PCA源程序,主元分析源程序,可以用于变量的特征提取(PCA source code, principal component analysis source, can be used for variable feature extraction)
    2017-06-04 21:05:56下载
    积分:1
  • holt_winters
    holt-winters 三次指数平滑算法,时间序列预测算法,带测试数据及Demo(Triple Order Exponential Smoothing, Holt-Winters algorithm, time series prediction algorithm with test data and Demo)
    2016-10-10 18:57:02下载
    积分:1
  • Java实现Apriori算法
    Java实现Apriori数据挖掘算法,包内还有实例用的数据库 Apriori数据挖掘算法:先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递归的方法。 请在jbuilder下编译 配好JDBC驱动 商品如果 买的表示为大写 没买表示为小写的 具体看GetSource.java
    2022-10-02 14:05:03下载
    积分:1
  • 决策树与集成算法
    决策树与集成算法,用来分类已知数据种类,希望对编程有帮助(Decision tree and ensemble algorithm are used to classify known data types.)
    2018-09-09 17:38:01下载
    积分:1
  • MqnieCarlo
    MonteCarlo仿真的C++源码,具有参考价值(C source code of MonteCarlo simulation, which has reference value)
    2018-08-03 21:25:08下载
    积分:1
  • arima
    时间序列法,通过过去数据来建立相应模型来预测未来数据(Time series, using past data to establish corresponding models to predict future data)
    2018-03-08 22:01:43下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 31今日下载