登录
首页 » matlab » ELM

ELM

于 2018-03-14 发布 文件大小:3947KB
0 315
下载积分: 1 下载次数: 11

代码说明:

  一种神经网络算法:极限学习机(ELM),包括分类和回归,仿真验证无误,适合初学者练习(A data mining algorithm: limit learning machine (ELM), including classification and regression, simulation verification is unmistakable, suitable for beginners to practice)

文件列表:

ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\BP_diabetes.m, 2265 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\BP_sinc.asv, 2298 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes_test, 19200 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes_train, 57600 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes_test, 19200 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes_train, 57600 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\ELM.asv, 9389 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\ELM.m, 9390 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\ELM_diabetes.m, 874 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM.m, 9385 , 2013-08-31
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\elm_predict.m, 3763 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\elm_train.m, 5645 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes_test, 19200 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes_train, 57600 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\SVM_diabetes.asv, 2224 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\SVM_diabetes.m, 2250 , 2013-10-03
ELM\ELMѧϰ\Basic ELM(for ELM with random hidden nodes)\elm.pdf, 460493 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\BP_sinc.m, 1481 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc_mean.asv, 1463 , 2013-09-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc_test, 687 , 2013-10-21
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc_train, 2280 , 2013-10-21
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\ELM.m, 7862 , 2013-09-06
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\ELM_sinc.m, 780 , 2013-10-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc_mean.asv, 786 , 2013-09-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc_test, 682 , 2014-05-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc_train, 2290 , 2014-05-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM.m, 9385 , 2013-08-31
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\elm_predict.m, 3763 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\elm_train.m, 5645 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc_mean.asv, 1463 , 2013-09-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc_test, 681 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc_train, 2302 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\SVR_sinc.asv, 2185 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\SVR_sinc.m, 2186 , 2013-09-14
ELM\ELMѧϰ\B_ELM\B-ELM.zip, 1341073 , 2013-10-05
ELM\ELMѧϰ\C_ELM\Compelx-ELM.zip, 377581 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes_test, 19200 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes_train, 57600 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\elm_kernel.m, 7861 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\ELM_kernel_diabetes.m, 889 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\elm_kernel.m, 7861 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\ELM_kernel_sinc.m, 795 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc_mean.asv, 786 , 2013-09-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc_test, 688 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc_train, 2287 , 2013-10-05
ELM\ELMѧϰ\OS_ELM\OS-ELM\HardlimActFun.m, 209 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\OSELM.m, 7690 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\OSELM_VARY.m, 7778 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\RBFun.m, 287 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\SigActFun.m, 211 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\SinActFun.m, 199 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\oselm.pdf, 666139 , 2013-10-16
ELM\ELMѧϰ\SaDE_ELM\SaDE-ELM.rar, 4877 , 2013-10-05
ELM\ELMѧϰ\Weighted_ELM\Weighted-ELM.zip, 6993 , 2013-10-05
ELM\ELM学习\测试比较图.doc, 167936 , 2013-10-05
ELM\分类\ELMfenglei.m, 1741 , 2013-08-26
ELM\分类\elmpredict.m, 1454 , 2010-11-07
ELM\分类\elmtrain.m, 1752 , 2010-11-07
ELM\分类\iris.mat, 1059 , 2009-11-14
ELM\回归\chejing.mat, 213954 , 2014-07-04
ELM\回归\elm\chejing.mat, 213954 , 2014-07-04
ELM\回归\elm\ELM.m, 2298 , 2014-07-04
ELM\回归\elm\elmpredict.m, 1454 , 2010-11-07
ELM\回归\elm\elmtrain.m, 1752 , 2010-11-07
ELM\回归\ELMhuigui.m, 3444 , 2014-07-04
ELM\回归\elmpredict.m, 1454 , 2010-11-07
ELM\回归\elmtrain.m, 1752 , 2010-11-07
ELM\回归\main.asv, 3194 , 2013-08-26
ELM\回归\psoelm\chejing.mat, 213954 , 2014-07-04
ELM\回归\psoelm\elmpredict.m, 1454 , 2010-11-07
ELM\回归\psoelm\elmtrain.m, 3605 , 2014-07-04
ELM\回归\psoelm\fun.m, 1181 , 2014-07-04
ELM\回归\psoelm\PSOELM.m, 2391 , 2014-07-04
ELM\回归\psoelm.zip, 428805 , 2014-07-04
ELM\回归\spectra_data.mat, 171497 , 2010-10-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC), 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes), 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类, 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归, 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\diabetes分类, 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\sinc回归, 0 , 2018-03-14
ELM\ELMѧϰ\OS_ELM\OS-ELM, 0 , 2018-03-14

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Kares入门资料打包
    说明:  深度学习框架Keras入门资料,里面的代码包括课件和DEMO有利于新书入门学习,简单易懂(Keras Introductory Information of Deep Learning Framework, which includes courseware and DEMO, is helpful for introductory learning of new books. It is easy to understand.)
    2020-06-17 17:00:01下载
    积分:1
  • YTCVI47
    徐士良《C常用算法程序集》第2版 第2部分()
    2018-02-05 12:36:49下载
    积分:1
  • weka源代码
    weka是一个很优秀的数据挖掘软件,可以把weka作为程序包打入工程中,基本想要的功能很快就能实现
    2023-06-01 10:00:04下载
    积分:1
  • emd program-matlab
    说明:  EMD经验模态分解算法程序,适合非线性,非平稳时间序列的处理(EMD empirical mode decomposition algorithm program)
    2019-01-14 20:43:57下载
    积分:1
  • wpplication
    这是在MATLAB上的SIMULINK中实现的雷达系统仿真实例,用户可以自己设定目标距离,方向等参数,()
    2017-12-10 08:25:20下载
    积分:1
  • 海杂波
    说明:  处理ipix官网下载的雷达原始数据,将方位角以及俯仰角进行处理(Processing radar raw data downloaded from IPIX official website)
    2021-04-14 09:38:55下载
    积分:1
  • 粗糙集
    粗糙集在进行属性约简时需要求其正域,此为求正域程序(Rough Set for Positive Domain)
    2020-06-19 09:00:06下载
    积分:1
  • Archive
    PCA 数据降维 PTYTHON 数据分析/挖掘(PCA dimensionality reduction data mining/analysis)
    2020-06-21 15:40:02下载
    积分:1
  • 机器学习实战
    说明:  机器学习实战中文英文pdf+数据集+代码(Practice of machine learning)
    2021-02-21 23:11:22下载
    积分:1
  • 98598152
    实现通用的matlab蚁群算法的c++源码 重复使用度高()
    2018-07-05 18:01:35下载
    积分:1
  • 696518资源总数
  • 105678会员总数
  • 22今日下载