登录
首页 » matlab » ELM

ELM

于 2018-03-14 发布 文件大小:3947KB
0 247
下载积分: 1 下载次数: 11

代码说明:

  一种神经网络算法:极限学习机(ELM),包括分类和回归,仿真验证无误,适合初学者练习(A data mining algorithm: limit learning machine (ELM), including classification and regression, simulation verification is unmistakable, suitable for beginners to practice)

文件列表:

ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\BP_diabetes.m, 2265 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\BP_sinc.asv, 2298 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes_test, 19200 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes_train, 57600 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes_test, 19200 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes_train, 57600 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\ELM.asv, 9389 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\ELM.m, 9390 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\ELM_diabetes.m, 874 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM.m, 9385 , 2013-08-31
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\elm_predict.m, 3763 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\elm_train.m, 5645 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes_test, 19200 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes_train, 57600 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\SVM_diabetes.asv, 2224 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\SVM_diabetes.m, 2250 , 2013-10-03
ELM\ELMѧϰ\Basic ELM(for ELM with random hidden nodes)\elm.pdf, 460493 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\BP_sinc.m, 1481 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc_mean.asv, 1463 , 2013-09-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc_test, 687 , 2013-10-21
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc_train, 2280 , 2013-10-21
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\ELM.m, 7862 , 2013-09-06
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\ELM_sinc.m, 780 , 2013-10-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc_mean.asv, 786 , 2013-09-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc_test, 682 , 2014-05-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc_train, 2290 , 2014-05-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM.m, 9385 , 2013-08-31
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\elm_predict.m, 3763 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\elm_train.m, 5645 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc_mean.asv, 1463 , 2013-09-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc_test, 681 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc_train, 2302 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\SVR_sinc.asv, 2185 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\SVR_sinc.m, 2186 , 2013-09-14
ELM\ELMѧϰ\B_ELM\B-ELM.zip, 1341073 , 2013-10-05
ELM\ELMѧϰ\C_ELM\Compelx-ELM.zip, 377581 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes_test, 19200 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes_train, 57600 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\elm_kernel.m, 7861 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\ELM_kernel_diabetes.m, 889 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\elm_kernel.m, 7861 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\ELM_kernel_sinc.m, 795 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc_mean.asv, 786 , 2013-09-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc_test, 688 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc_train, 2287 , 2013-10-05
ELM\ELMѧϰ\OS_ELM\OS-ELM\HardlimActFun.m, 209 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\OSELM.m, 7690 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\OSELM_VARY.m, 7778 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\RBFun.m, 287 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\SigActFun.m, 211 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\SinActFun.m, 199 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\oselm.pdf, 666139 , 2013-10-16
ELM\ELMѧϰ\SaDE_ELM\SaDE-ELM.rar, 4877 , 2013-10-05
ELM\ELMѧϰ\Weighted_ELM\Weighted-ELM.zip, 6993 , 2013-10-05
ELM\ELM学习\测试比较图.doc, 167936 , 2013-10-05
ELM\分类\ELMfenglei.m, 1741 , 2013-08-26
ELM\分类\elmpredict.m, 1454 , 2010-11-07
ELM\分类\elmtrain.m, 1752 , 2010-11-07
ELM\分类\iris.mat, 1059 , 2009-11-14
ELM\回归\chejing.mat, 213954 , 2014-07-04
ELM\回归\elm\chejing.mat, 213954 , 2014-07-04
ELM\回归\elm\ELM.m, 2298 , 2014-07-04
ELM\回归\elm\elmpredict.m, 1454 , 2010-11-07
ELM\回归\elm\elmtrain.m, 1752 , 2010-11-07
ELM\回归\ELMhuigui.m, 3444 , 2014-07-04
ELM\回归\elmpredict.m, 1454 , 2010-11-07
ELM\回归\elmtrain.m, 1752 , 2010-11-07
ELM\回归\main.asv, 3194 , 2013-08-26
ELM\回归\psoelm\chejing.mat, 213954 , 2014-07-04
ELM\回归\psoelm\elmpredict.m, 1454 , 2010-11-07
ELM\回归\psoelm\elmtrain.m, 3605 , 2014-07-04
ELM\回归\psoelm\fun.m, 1181 , 2014-07-04
ELM\回归\psoelm\PSOELM.m, 2391 , 2014-07-04
ELM\回归\psoelm.zip, 428805 , 2014-07-04
ELM\回归\spectra_data.mat, 171497 , 2010-10-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC), 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes), 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类, 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归, 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\diabetes分类, 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\sinc回归, 0 , 2018-03-14
ELM\ELMѧϰ\OS_ELM\OS-ELM, 0 , 2018-03-14

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • Archive
    PCA 数据降维 PTYTHON 数据分析/挖掘(PCA dimensionality reduction data mining/analysis)
    2020-06-21 15:40:02下载
    积分:1
  • OPTICS
    此为利用optics聚类方法剔除风电异常数据后,采用极限学习机验证的代码(optics data mining)
    2017-03-22 19:29:22下载
    积分:1
  • Ecalt算法
    Eclat算法是一种深度优先算法,采用垂直数据表示形式,在概念格理论的基础上利用基于前缀的等价关系将搜索空间(概念格)划分为较小的子空间(子概念格)。Eclat算法采用方法二计算支持度。对候选k项集进行支持度计算时,不需再次扫描数据库,仅在一次扫描数据库后得到每个1项集的支持度,而候选k项集的支持度就是在对k-1项集进行交集操作后得到的该k项集Tidset中元素的个数。本算法利用diffset数据格式实现。
    2022-03-02 17:06:13下载
    积分:1
  • 朴素贝叶斯分类
    朴素贝叶斯分类的分类器实现,使用的是matlab语言。内含测试集和训练集,可直接运行,readme.txt文件中说明了数据格式
    2022-02-07 02:48:39下载
    积分:1
  • 最近邻分类代码
    在linux 下C语言实现最近邻聚类算法,工程已经使用(near K neighbor cluster)
    2017-12-21 16:45:51下载
    积分:1
  • boxcox
    boxcox函数的python实现,引用该函数可将偏态分布调整为正态分布(Python implementation of box Cox function)
    2020-06-17 09:40:01下载
    积分:1
  • 关于大的相关论文
    关于大数据的论文,对稀疏表示分类有很大的帮助,希望对初学者哟帮助
    2022-02-06 00:21:30下载
    积分:1
  • 0406遗传算法优化神经网络
    说明:  基于股票数据的神经网络,关于结算的预测,通过遗传算法加以改进(Based on the neural network of stock data, the prediction of settlement is improved by genetic algorithm)
    2020-04-26 21:54:01下载
    积分:1
  • IABC_KMC_test_on_Iris_wine_glass
    基于人工蚁群的的改进Kmeans,进行了改进,效果较好(Based on the improvement of artificial ant colony, Kmeans have been improved and the effect is better)
    2017-05-20 20:24:27下载
    积分:1
  • project
    数据挖掘,推荐系统,堆叠降噪自编码器,逻辑回归(Data mining, recommender systems, stack noise reduction, self coder, logic regression)
    2021-01-25 23:58:43下载
    积分:1
  • 696518资源总数
  • 104514会员总数
  • 30今日下载