登录
首页 » matlab » ELM

ELM

于 2018-03-14 发布 文件大小:3947KB
0 231
下载积分: 1 下载次数: 11

代码说明:

  一种神经网络算法:极限学习机(ELM),包括分类和回归,仿真验证无误,适合初学者练习(A data mining algorithm: limit learning machine (ELM), including classification and regression, simulation verification is unmistakable, suitable for beginners to practice)

文件列表:

ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\BP_diabetes.m, 2265 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\BP_sinc.asv, 2298 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes_test, 19200 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes)\diabetes_train, 57600 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes_test, 19200 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\diabetes_train, 57600 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\ELM.asv, 9389 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\ELM.m, 9390 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes)\ELM_diabetes.m, 874 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM.m, 9385 , 2013-08-31
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\elm_predict.m, 3763 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\elm_train.m, 5645 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes_test, 19200 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\diabetes_train, 57600 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\SVM_diabetes.asv, 2224 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes)\SVM_diabetes.m, 2250 , 2013-10-03
ELM\ELMѧϰ\Basic ELM(for ELM with random hidden nodes)\elm.pdf, 460493 , 2013-10-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\BP_sinc.m, 1481 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc_mean.asv, 1463 , 2013-09-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc_test, 687 , 2013-10-21
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC)\sinc_train, 2280 , 2013-10-21
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\ELM.m, 7862 , 2013-09-06
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\ELM_sinc.m, 780 , 2013-10-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc_mean.asv, 786 , 2013-09-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc_test, 682 , 2014-05-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC)\sinc_train, 2290 , 2014-05-03
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM.m, 9385 , 2013-08-31
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\elm_predict.m, 3763 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\elm_train.m, 5645 , 2004-05-10
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc_mean.asv, 1463 , 2013-09-05
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc_test, 681 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\sinc_train, 2302 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\SVR_sinc.asv, 2185 , 2013-09-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC)\SVR_sinc.m, 2186 , 2013-09-14
ELM\ELMѧϰ\B_ELM\B-ELM.zip, 1341073 , 2013-10-05
ELM\ELMѧϰ\C_ELM\Compelx-ELM.zip, 377581 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes2.dt, 46403 , 2004-03-18
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes2_data.m, 1161 , 2004-04-17
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes_test, 19200 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\diabetes_train, 57600 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\elm_kernel.m, 7861 , 2013-10-05
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes)\ELM_kernel_diabetes.m, 889 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\elm_kernel.m, 7861 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\ELM_kernel_sinc.m, 795 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc.m, 706 , 2013-09-14
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc_mean.asv, 786 , 2013-09-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc_test, 688 , 2013-10-05
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC)\sinc_train, 2287 , 2013-10-05
ELM\ELMѧϰ\OS_ELM\OS-ELM\HardlimActFun.m, 209 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\OSELM.m, 7690 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\OSELM_VARY.m, 7778 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\RBFun.m, 287 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\SigActFun.m, 211 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\OS-ELM\SinActFun.m, 199 , 2006-06-06
ELM\ELMѧϰ\OS_ELM\oselm.pdf, 666139 , 2013-10-16
ELM\ELMѧϰ\SaDE_ELM\SaDE-ELM.rar, 4877 , 2013-10-05
ELM\ELMѧϰ\Weighted_ELM\Weighted-ELM.zip, 6993 , 2013-10-05
ELM\ELM学习\测试比较图.doc, 167936 , 2013-10-05
ELM\分类\ELMfenglei.m, 1741 , 2013-08-26
ELM\分类\elmpredict.m, 1454 , 2010-11-07
ELM\分类\elmtrain.m, 1752 , 2010-11-07
ELM\分类\iris.mat, 1059 , 2009-11-14
ELM\回归\chejing.mat, 213954 , 2014-07-04
ELM\回归\elm\chejing.mat, 213954 , 2014-07-04
ELM\回归\elm\ELM.m, 2298 , 2014-07-04
ELM\回归\elm\elmpredict.m, 1454 , 2010-11-07
ELM\回归\elm\elmtrain.m, 1752 , 2010-11-07
ELM\回归\ELMhuigui.m, 3444 , 2014-07-04
ELM\回归\elmpredict.m, 1454 , 2010-11-07
ELM\回归\elmtrain.m, 1752 , 2010-11-07
ELM\回归\main.asv, 3194 , 2013-08-26
ELM\回归\psoelm\chejing.mat, 213954 , 2014-07-04
ELM\回归\psoelm\elmpredict.m, 1454 , 2010-11-07
ELM\回归\psoelm\elmtrain.m, 3605 , 2014-07-04
ELM\回归\psoelm\fun.m, 1181 , 2014-07-04
ELM\回归\psoelm\PSOELM.m, 2391 , 2014-07-04
ELM\回归\psoelm.zip, 428805 , 2014-07-04
ELM\回归\spectra_data.mat, 171497 , 2010-10-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\BP(diabetes), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\ELM(diabetes), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类\SVM(diabetes), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\BP(SINC), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\ELM(SINC), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归\SVR(SINC), 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\diabetes分类\ELM_kernel(diabetes), 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\sinc回归\ELM_kernel(SINC), 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\diabetes分类, 0 , 2018-03-14
ELM\ELM学习\Basic ELM(for ELM with random hidden nodes)\sinc回归, 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\diabetes分类, 0 , 2018-03-14
ELM\ELM学习\ELM_kernel\sinc回归, 0 , 2018-03-14
ELM\ELMѧϰ\OS_ELM\OS-ELM, 0 , 2018-03-14

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Kares入门资料打包
    说明:  深度学习框架Keras入门资料,里面的代码包括课件和DEMO有利于新书入门学习,简单易懂(Keras Introductory Information of Deep Learning Framework, which includes courseware and DEMO, is helpful for introductory learning of new books. It is easy to understand.)
    2020-06-17 17:00:01下载
    积分:1
  • znsbudk
    人工智能中,经典的基于小波变换的图像处理和图像去噪的解决办法,可下载后观摩使用(In artificial intelligence, the classical image processing and image denoising based on wavelet transform can be downloaded and used)
    2018-09-04 02:06:36下载
    积分:1
  • 关于大的相关论文
    关于大数据的论文,对稀疏表示分类有很大的帮助,希望对初学者哟帮助
    2022-02-06 00:21:30下载
    积分:1
  • GibbsLDA
    用Gibb Sampling 的方法对LDA的参数进行推断(LDA model with Gibbs Sampling for inference)
    2019-01-24 09:28:57下载
    积分:1
  • 贝叶斯网络 R语言实例 牛津大学
    说明:  R语言构建贝叶斯网络,很实用的讲解和案例(Construction of Bayesian network with R language, a very practical explanation and case)
    2020-06-19 18:26:44下载
    积分:1
  • spider-(2)
    应用python编写的百度指数新闻爬取代码(baiduindex spider)
    2017-03-15 21:45:43下载
    积分:1
  • 最近邻分类代码
    在linux 下C语言实现最近邻聚类算法,工程已经使用(near K neighbor cluster)
    2017-12-21 16:45:51下载
    积分:1
  • DataMiningProject-Bearing
    说明:  用于轴承大数据的故障诊断和数据挖掘,可将轴承的振动信息进行数组分析,获得预测模型,准确率较高(It can be used for fault diagnosis and data mining of bearing big data. It can analyze the vibration information of bearing by array and obtain the prediction model with high accuracy)
    2020-04-12 12:38:34下载
    积分:1
  • svm
    运用支持向量机对一组超宽带非视距信号识别(Support Vector Machine Signal Identification)
    2017-03-15 09:54:33下载
    积分:1
  • MF-DFA-master
    多重分形去趋势波动分析法,用于不同时间序列的重分形交叉相关性分析。(Multifractal detrended fluctuation analysis)
    2018-09-06 14:29:01下载
    积分:1
  • 696518资源总数
  • 104384会员总数
  • 26今日下载