-
matlabfft
用MATLAB实现fft变换,很easy,源代码如下(MATLAB,fft)
- 2010-06-02 14:39:40下载
- 积分:1
-
CH4M-files
some very usefull matlab codes for DCS
- 2011-11-06 16:59:08下载
- 积分:1
-
backgroundextractor
Gaussian matlab extractor
- 2015-03-23 09:06:21下载
- 积分:1
-
dad
利用MATLAB的GUI功能制作电机旋转磁场演示软件。(MATLAB-GUI features making use of the motor rotating magnetic field presentation software.)
- 2010-12-07 13:43:46下载
- 积分:1
-
sift1
SIFT ALGORITHM IS BEST OPTION
- 2011-05-02 16:48:39下载
- 积分:1
-
4-ary-LDPC
4-ary LDPC matlab code
- 2020-08-25 13:28:16下载
- 积分:1
-
xiashan
MATLAB 牛顿下山法的一个小程序,原理就不详细说了。因牛顿迭代法受初值选取的限制,为防止迭代发散,对迭代过程再附加一项要求:|f(x(k+1))|<|f(x(k))|,将牛顿法迭代的结果:x(k+1) =x(k)-f(x(k))/f (x(k))和前一近似值x(k)适当加权平均做为新的改进值:x(k+1)=u*x(k+1) +(1-u)*x(k),其中u(0<>
迭代时u取1开始,逐次减半计算,直至附加要求符合为止。实例计算中x(k)=x(0)不变,只更新u和x(k+1),直至:|f(x(k+1))|<|f(x(k))|(即|f(x(1))|<|f(x(0))|),然后更新下山因子为u=1,继续以牛顿法迭代。(MATLAB Newton-down a small program, the principle is not explained in detail. Newton iteration by the initial value of the selected limit, in order to prevent additional iterative divergence, the iterative process a request: | f (x (k+1)) | < | f (x (k)) | Newton iteration Results: x (k+1) ' = X (k)-f (x (k))/f' (x (k)) and a previous approximation x (k), appropriately weighted average as a new improved value: x (k+1 ) = u* x (k+1) ' + (1-u)* x (k), where u (0 < u> iteration take successive calculated at 50 until the additional requirements found so far. examples of calculation of X ( k) = x (0) unchanged profile u and x (k+1, hungry) until: | f (x (k+1)) | < | f (x (k)) | (i.e. | f (x (1)) | < | f (x (0)) |), then profile downhill factor for u = 1, to continue to Newton iteration.)
- 2013-05-15 08:52:09下载
- 积分:1
-
Lagrange
拉格朗日插值Matlab编程实现//拉格朗日插值Matlab编程实现(Lagrange Interpolation Matlab programming
)
- 2010-12-25 16:58:30下载
- 积分:1
-
maxvrais_modele_lineaire_rec
最大似然估计算法Matlab实现,不容易啊!!!!!!!!!!(Maximum likelihood estimate,not so esay!!!!!!!!!!)
- 2013-11-28 20:22:13下载
- 积分:1
-
1
MATLAB实现的人脸检测程序 (PCA)方法,内附有详细注释(MATLAB implementation of face detection (PCA) method, enclosed is the detailed comments)
- 2013-12-03 17:29:43下载
- 积分:1