nnet-0.1.7
代码说明:
Octave Neural Network rewritten to be compatible with Matlab.
文件列表:
nnet-0.1.7
..........\htm" target=_blank>ChangeLog
..........\configure
..........\htm" target=_blank>COPYING
..........\htm" target=_blank>DESCRIPTION
..........\doc
..........\...\pdf
..........\...\...\neuralNetworkToolboxForOctaveUsersGuide.pdf
..........\INDEX
..........\inst
..........\....\calcjacobian.m
..........\....\calcperf.m
..........\....\checknetstruct.m
..........\....\dlogsig.m
..........\....\dpurelin.m
..........\....\dtansig.m
..........\....\getx.m
..........\....\init.m
..........\....\isposint.m
..........\....\logsig.m
..........\....\minmax.m
..........\....\mse.m
..........\....\newff.m
..........\....\newnetwork.m
..........\....\poststd.m
..........\....\prestd.m
..........\....\printAdaptFcn.m
..........\....\printAdaptParam.m
..........\....\printB.m
..........\....\printBiasConnect.m
..........\....\printBiases.m
..........\....\printInitFcn.m
..........\....\printInitParam.m
..........\....\printInputConnect.m
..........\....\printInputs.m
..........\....\printInputWeights.m
..........\....\printIW.m
..........\....\printLayerConnect.m
..........\....\printLayers.m
..........\....\printLayerWeights.m
..........\....\printLW.m
..........\....\printMLPHeader.m
..........\....\printNetworkType.m
..........\....\printNumInputDelays.m
..........\....\printNumInputs.m
..........\....\printNumLayerDelays.m
..........\....\printNumLayers.m
..........\....\printNumOutputs.m
..........\....\printNumTargets.m
..........\....\printOutputConnect.m
..........\....\printOutputs.m
..........\....\printPerformFcn.m
..........\....\printPerformParam.m
..........\....\printTargetConnect.m
..........\....\printTargets.m
..........\....\printTrainFcn.m
..........\....\printTrainParam.m
..........\....\purelin.m
..........\....\saveMLPStruct.m
..........\....\setx.m
..........\....\sim.m
..........\....\tansig.m
..........\....\train.m
..........\....\trainlm.m
..........\....\trastd.m
..........\Makefile
下载说明:请别用迅雷下载,失败请重下,重下不扣分!