-
神经网络算法的神经网络负反馈
用VC++实现的BP(反向传播负反馈)神经网络算法-with VC BP (BP negative feedback) neural network algorithm
- 2022-01-25 21:07:43下载
- 积分:1
-
基于VC开发的自适应遗传算法源程序
大家一起学习吧
基于VC开发的自适应遗传算法源程序
大家一起学习吧-development of the VC-based Adaptive genetic algorithm source you learn it
- 2022-01-23 10:13:02下载
- 积分:1
-
学习protege的教程(开源软件设计的本体论)
tutorials for learning protege(open source softwar to design the ontology)
- 2022-02-24 22:45:11下载
- 积分:1
-
人工智能8数码问题
人工智能8数码问题-artificial intelligence problem
- 2022-05-16 17:05:14下载
- 积分:1
-
genetic algorithm optimization neural network architecture! !
遗传算法进行优化神经网络结构-genetic algorithm optimization neural network architecture! !
- 2023-02-06 21:25:03下载
- 积分:1
-
用模拟退火法高效的计算图论中哈密顿贿赂的最短路径
用模拟退火法高效的计算图论中哈密顿贿赂的最短路径-simulated annealing method of calculating efficient graph theory Hamiltonian bribery Shortest Path
- 2022-01-21 20:53:24下载
- 积分:1
-
神经网络c++源程序.rar
神经网络c++源程序.rar-neural network source. Rar
- 2022-09-22 20:55:03下载
- 积分:1
-
该软件通过BP神经网络学习机制,能够对屏幕上的数字进行识别。...
该软件通过BP神经网络学习机制,能够对屏幕上的数字进行识别。-the software through BP neural network learning mechanism, to right on the screen digital identification.
- 2022-06-17 18:05:35下载
- 积分:1
-
找出输入txt文件中出现的不同词汇,统计各词数目并按数目排序。使用hash表提高新词插入词表速度。...
找出输入txt文件中出现的不同词汇,统计各词数目并按数目排序。使用hash表提高新词插入词表速度。-Txt file to find enter appear in a different vocabulary, the number of statistics in accordance with the number of words to sort. Use hash table to insert new words to improve the speed of the word table.
- 2023-06-24 19:10:03下载
- 积分:1
-
落煤残存瓦斯量的确定是采掘工作面瓦斯涌出量预测的重要环节,它直接影响着采掘工作面瓦斯涌出量预测的精度,并与煤的变质程度、落煤粒度、原始瓦斯含量、暴露时间等影响因...
落煤残存瓦斯量的确定是采掘工作面瓦斯涌出量预测的重要环节,它直接影响着采掘工作面瓦斯涌出量预测的精度,并与煤的变质程度、落煤粒度、原始瓦斯含量、暴露时间等影响因素呈非线性关系。人工神经网络具有表示任意非线性关系和学习的能力,是解决复杂非线性、不确定性和时变性问题的新思想和新方法。基于此,作者提出自适应神经网络的落煤残存瓦斯量预测模型,并结合不同矿井落煤残存瓦斯量的实际测定结果进行验证研究。结果表明,自适应调整权值的变步长BP神经网络模型预测精度高,收敛速度快 该预测模型的应用可为采掘工作面瓦斯涌出量的动态预测提供可靠的基础数据,为采掘工作面落煤残存瓦斯量的确定提出了一种全新的方法和思路。-charged residual coal gas is to determine the volume of mining gas emission rate forecast an important link, which directly affect mining gas emission rate forecast accuracy, and with coal metamorphism, loading coal particle size, the original gas content, exposure time and other factors nonlinear relationship. Artificial neural networks have expressed arbitrary nonlinear relationships and the ability to solve complex nonlinear, time-varying uncertainty and the new ideas and new approaches. Based on this, the author of adaptive neural network loading coal residual gas production forecast model, and a combination of different loading coal mine gas remnants of the actual test results of research
- 2022-03-12 11:40:03下载
- 积分:1