登录
首页 » Others » 64QAM调制原理.doc

64QAM调制原理.doc

于 2021-06-09 发布
0 159
下载积分: 1 下载次数: 3

代码说明:

64QAM调制原理   (1)基于  DVB-C的有线数字电视 基于DVB-C的有线数字电视采用了频分(8MHz与8MHz之间)与时分(8MHz之内)复用相结合的方法在一个物理频道上可传输6~8套标准清晰度(码率4Mb/s对应40多万像素)电视节目或2套高清晰度(码率18Mb/s对应200多万像素)电视节目。具有图形质量好,可达到DVD的图象质量。传输节目的套数多(可上百套),而且还可像手机一样移动接收且无重影。同时有线数字电视信号的抗干扰能力也模拟电视信号强(源于信道编码),此外有线数字电视还具有模拟电视无法比拟的条件接收(可从技术手段上彻底解决收费与非法偷接信号的问题)和电子节目指南(EPG)等一系列优点。由于有线数字电视系统远比模拟电视系统复杂,其关键技术也比模拟电视好,主要体现:信源编/解码、信道编/解码、传输复用、64QAM正交幅度调制、条件接收(CA)系统、中间件技术和大屏幕显示技术等。我们知道模拟电视的三大技术指标是C/N、CTB和CSO,而有线数字电视系统的主要技术指标除了这3项之外还有:采样频率、量化比特率、数码率(数码率=采样频率*量化比特率)、误码率、相位抖动和调制误差率(MER)等。需要说明的是模拟电视与数字电视的载噪比(C/N)的定义不同:对模拟电视而言C/N的定义是图象载波电平的有效值与规定噪声带宽(5.75MHz)的噪声电平的均方根值之比。而数字电视的C/N的定义却是己调制信号的平均功率与规定噪声带宽(6.95MHz)内的噪声的平均功率之比。   (2)常用的数字调制方式 所谓数字调制是指用数字的基带信号对正弦载波信号的某些参数(幅度、频率和相位)进行控制,使之其随基带信号的变化而变化。数字调制有幅移键控(ASK)、频移键控(FSK)和相移键控(PSK)三种基础形式。当然也可由这三种基本形式组合成联合键控,例如mQAM调制就是幅度和相位的联合键控。此外,还有编码正交频分复用(COFDM),X进制残留边带调制(美国数字电视使用,其中8VSB相当于相当于64QAM,16VSB相当于相当于256QAM)等。数字调制与模拟调制从本质上讲没有什么区别,只不过模拟调制(以调幅为例)对载波的调制是连续的(信号本身就是连续的),同时在收端对载波信号的调制参量的幅度也是连续地估值。而数字调制则对载波的调制不是连续地估计。而数字调制则对载波的调制不是连续的,仅是若干个离散的值,在收端只对载波信号的离散调制参量的幅度进行检测。   衡量数据信号的载波调制有两个重要的指标,一是频带利用率(调制效率,单位频带内所能传输的比特数);二是功率利用率(在满足误码率的条件下所需功率越小,功率利用率越高)。我们知道数字通信系统的研究的目标是在最小的信道带宽内,以最低的差错率和最低的信号功率来传输最大的数据量。由于图象信号压缩编码后的码率仍是4M/s(标清),为了在有限的带宽内传输更多的消息量,通常既要求调制效率较高,同时也要求功率利用率较高,而mQAM因其是抑制了载波的调制,具有较高的功率利用率,刚好满足这一点。因此,基于DVB-C有线数字电视采用mQAM调制方式,64QAM b/s是高效的二维调制,理论上调制效率可达6b/s,但考虑滚降和信道编码后实际调制效率为4.75b/s。 (3) 64QAM调制     我们知道单独使用幅度或相位携带信息时,不能充分利用信号平面,这可从星座图上直观地看到,对mASM调制而言,星座点分布在一条轴线上,mPSM调制的星座点分布在圆周上,同时伴随着m的增大其星座点的距离也跟着减小,造成抗干扰能力的下降。为解决这一问题mQAM调制应运而生,它是一种二维调制,同时具备较高的调制效率和较好的功率利用率。mQAM调制可充分利用信号平面,星座点的分布呈块状。 mQAM调制既可以用无线信道,也可以用有线信道。由于有线数字信道以HFC网络为传输媒介,信道的条件较好,m的数值可选的稍大一些。一般而言m的数值选择要兼顾调制效率和信道条件这两方面因素,故基于DVB-C的有线数字电视选用64QAM调制。 64QAM调制是基于DVB-C的有线数字电视的核心技术,所谓QAM是用两个独立的基带信号对两个相互正交的同频载波进行抑制载波的双边带调制。在mQAM中m叫状态数,通常取值为16、32、64、128和256,状态越低(意味着星座点之间的空间距离远)抗干扰能力强,但调制效率较低(携带的消息量少),反之状态数越大(意味着星座点之间的空间距离近)抗干扰能力弱,但调制效率较高(携带的消息量大,同时要求信道质量也越高,即要求优质的光缆电缆和各种有源无源器件直至优质的施工质量)。有线数字电视DVB-C标准中规定使用的是64QAM,需要特别注意的是64QAM的名称虽为正交幅度调制,但实际上却是所谓的振幅-相位联合键控,这是一个有线数字电视中非常重要的概念,正因为QAM相位调制(依靠不同的相位携带不同的消息),才导致了有线数字电视对HFC传输网络质量的要求高于模拟电视。64QAM中的64个状态(星座点)上的每个星座点的解调要靠幅度和相位共同决定,64QAM中采用的是8进制(或8电平,提高效率),每个星座点由6比特(6位二进制组成,从000000~111111),所有的信息(视频码流、音频码流、和辅助数据码流)都在每一个星座点中的6比特中。 (3.1)64QAM调制的原理 所谓mQAM是用两个独立的基带信号对两个相互正交的同频载波进行抑制载波的双边带载波。设ml(t)和mQ(t)是两个独立的基带信号,cosωct和sinωct是相互正交的载波,则发送端形成的正交振幅调制信号为:     e0(t)=mI(t) cosωct mQ(t) sinωct 其中:cosωct为同相信号或I信号,sinωct是正交信号或Q信号。以64QAM为例,经2~8电平转换后可得到-1、-3、-5、-7、 1、 3、 5和 7共8个电平,则调制器I(正交)输出的8个信号为 7sinωct、 5sinωct、 3sinωct、 1sinωct、-1sinωct、-3sinωct、-5sinωct、-7sinωct;调制器Ⅱ(同相)输出的8个信号为: 7cosωct、 5cosωct、 3cosωct、 1cosωct、-1cosωct、-3cosωct、-5cosωct和-7cosωct。两路己调信号相加共有64个不同的组合,这样便形成64QAM的星座图。图Ⅰ为mQAM调制原理示意图。 由64QAM调制原理知其调制流程如下: (1)                                  输入多路复用的TS(系统复用器完成,一般而言一台复用器对应一台64QAM调制器),首先进行串并变换,即将一路串行码流变成二路并行码流,速率减半,码流为二进制; (2)                                  扰码频谱扩散(扰码是为了避免DVB-C数据帧结构中的长连“1”或长连“0”的出现,以便在接收端恢复时钟信号。MPEG-2传输复用包经过扰码处理后,其“1”或“0”在时间上变得均匀分布,此外扰码频谱扩散还能保证星座图中各点的能量密度一致); (3)                                  信道编码(外码,码型为RS,纠错FEC,为对付突发干扰引入外交织,内交织在188字节中进行,外交织包含RS编码在204字节中进行); (4)                                  字节映射成符号,即完成电平变换或称为进制变换(2电平变为8电平或2进制变为8进制,首先进行比特到符号的转换,如64QAM是将8比特数据转换成6比特为一组的符号); (5)                                  Nyquist滤波信号成型(即基带成形,在64QAM调制之前对I、Q信号进行升余弦平方根滚降滤波); (6)                                  多电平正交幅度调制64QAM产生中频信号,先由振荡器产生同相的载波,然后经移相90度后产生正交的载波,同时调制完成后将抑制载波,因为载波不携带任何信号; (7)                                  并串变换,既将二路并行码流变成一路串行码流,速率增加一倍,码流已不是二进制,而是变为8进制的符号; (8)                                  上变频形成RF信号输出。    这里的幅移键控本质上是一个乘法器,它将数据脉冲信号与正弦载波信号相乘,输出为已调信号。换言之,幅移键控即数字脉冲为1时,对应已调波有输出1信号,反之当幅移键控的数字脉冲为0时,对应已调波信号输出0信号。可见幅移键控实际上是将基带信号的频谱在频率轴上进行搬移。    64QAM调制器共有44种不同的相位,64种不同幅度,星座图中64个状态(000000~111111)中每一个状态的幅度和相位都是一一对应的关系,但由于存在着一些相位相同的星座点,这些点的判决由不同幅度和相同的相位共同决定,其他判决点由不同幅度和不同相位共同决定。     盲均衡(时域均衡)即指不需要训练信号,仅利用接收信号本身的先验信息便可均衡信道特性,使均衡器的输出信号尽量接近发送信号。 mQAM调制器的振荡器有传统的模拟振荡器和现代的数字振荡器之分,进口mQAM调制器一般为数字振荡器,其性能远优于模拟振荡器。基于数字振荡器的mQAM具有完美的正交调制、没有幅度不平衡、载波完全抑制和非线性失真等优点。 mQAM在调制时产生两个边带信号和一个载波分量,但载波分量不携带任何信息,不能有效的利用功率,因此在调制的输出信号中将载波抑制掉。在机顶盒的解调中采用相干解调,相干解调的关键技术是相干信号的提取,即载波的提取。相干载波需从抑制载波的已调信号本身中恢复出参考载波,通常采取非线性处理和滤波提取。经过非线性处理可以让不含载频的信号产生载频,然后再滤波提取,一般情况下,载波提取和解调是在同一个环内同时完成的,主要有平方环和考斯塔斯环(Costas)两种。然后机顶盒中恢复出的载波要与64QAM调制器产生的载波同频同相,这叫载波同步。此外数字系统中还有位同步(码元同步或比特同步)、帧同步和网同步等。 (3.2)64QAM调制的主要技术指标 64QAM调制器是数字调制器,其主要技术指标也较模拟的中频调制器多,mQAM调制器规定数字频道的载频安排在每个物理频道8MHz的中央位置,各频道的频率范围与模拟电视一致,也分捷变频和固定频道两种形式。下面以科学亚特兰大SA公司的主流品种QUASAR MKII(1U高度标准19英寸安装尺寸)mQAM调制器为例简介其主要技术指标和含义。 (1)                                       接口指标  接头:BNC,75Ω              ASI输入(标准配置)  类型:异步串行接口  包格式:自动检测:188/204包  码率:1~215Mb/s(最小1 Mb/s净荷) (2)                                       RF输出 接头:F头,BNC或75Ω,50/70Ω 频率:50~870MHz  带宽:1~8MHz可选  电平;50~60dBmV  回波损耗:≥15dB  BDR:≥9×10-9  SNR:≥50dB  RF测试口电平:-20 dB (3)                                       信号指标  信道编码;纠错方式FEC、RS编码和外交织  交织深度:I=12  MER(均衡后)≥40 dB(射频) 包格式:自动检测:188/204字节包  QAM星座:16、32、64、128、256QAM  支持的输入码率:高达215 Mb/s  符号率:1~7Mbaud  PID过滤功能:可选 (4)                                       网络接口  接口类型:RJ45  接口速率:10Base-T  支持协议:HTTP、SNMP (5)                                       选件     DS-3电信输入接口     64QAM调制器中最重要的一个技术指标是调制误差率(MER)。调制误差率国标的定义是理想矢量的幅度的平方与误差矢量幅度平方之比。显然调制误差率与反射损耗一样越大越好,国标规定64QAM的MER要大于32dB,256QAM的MER要大于30dB,图2为调制误差率示意图。         图2    调制误差率MER示意图 64QAM调制器还有一个信道指标有效载荷,数值为38Mb/s(不含RS编码),通常节目只能用到36Mb/s,还要留一部分码流传输EPG等辅助数据。它的含义是8MHz带宽内传输的码流不能大于此值(比如传10多套标清或3套高清电视节目),否则就会发生码流溢出的现象,从而导致马赛克或黑屏出现,就像GE中发生拥塞会降低传输速率或丢包一样。依标清电视码率4Mb/s和高电视码率18Mb/s,一台64QAM调制器可传8套标清或2套高清电视节目(还要为辅助数据如EPG等留下部分码流)。 选件DS3输入接口(北美标准三次群速率为45Mb/s)的功能很有使用价值,因为当今的广电网络并不是一个孤立的网络,大都通过SDH联网。上接省干SDH网络,下连各县SDH网络,可以说起到承上启下的作用。因此,从省网下传的信号和下连各县的信号都是走DS3通道,有了这个输入接口则SDH网络来的信号可以直接进入mQAM调制器,非常方便。相反若没有这个接口则还要使用网络适配器进行信号格式转换,即不方便也不经济。 (3.3)  64QAM调制和HFC网络的关系 基于DVB-C的有线数字电视前端平台中的设备和HFC网络联系最紧密的莫过于64QAM调制器了,其它前端设备如MPEG—2编码器和系统复用器等与HFC网络关联度不大,不像64QAM调制器那样对HFC网络的影响是直接和显著的。因此,从这个意义上讲64QAM对HFC网络有着举足轻重的作用。这样因为64QAM除了完成正交幅度调制外,还要完成信道的编码等功能。因为在实际运用中解码器(机顶盒)处要求MER大于30 dB,调制误差率反映了整个系统中信号所有类型的损伤和劣化。因此,调制误差率可以看成接收信号的品质因数,即数字信号能被正确还原的概率。可以这样理解调制误差率几乎相当于信噪比(S/N)的技术指标。显然调制误差率(MER)越高越好,这一点由调制误差率的定义不难看出。国标64QAM的MER要求大于32dB,好的可以大于43 dB,高于国标10 dB。显然,调制误差率是64QAM调制器中最重要的一个技术指标,这一点就像HFC网络中射频放大器的非线性失真指标一样重要。调制误差率(MER)高意味着对HFC网络的质量要求可以较低,即容许放大器串联的级数可以稍多,容许网络中有一些反射、接触不良和同轴电缆的质量可以稍差一点等等。反之若调制误差率(MER)指标越低,意味着对HFC网络的质量要求较高,即容许放大器串联的级数少,同时对HFC网络中存在反射、接触不良和同轴电缆的质量等提出了更高的要求(实际情况表明,这一点往往是不容易达到的)。由此可见调制误差率(MER)也是区分QAM调制器档次高低的关键技术指标。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • 改进遗传算法求解走班制下的排课
    改进的遗传算法解决排课问题,讲的很详细,需要的同学可以下载来看看。
    2020-11-27下载
    积分:1
  • HTML5+JS实现的全屏星空特效源码
    HTML5+JS实现的全屏星空特效源码HTML5+JS实现的全屏星空特效源码HTML5+JS实现的全屏星空特效源码HTML5+JS实现的全屏星空特效源码HTML5+JS实现的全屏星空特效源码
    2020-12-09下载
    积分:1
  • 粒子群机器人路径规划
    一个用粒子群开发的Matlab移动机器人路径规划
    2020-12-01下载
    积分:1
  • 标准测试图像(含lena,boboon等bmp,tiff,jpg图像
    标准测试图像(含lena,boboon等bmp,tiff,jpg图像
    2020-12-01下载
    积分:1
  • 伪彩色处理 灰度级-彩色变换法
    采用灰度级-彩色变换法将灰度图像处理成彩色图像并在matlab下实现
    2020-11-29下载
    积分:1
  • 基于FPGA的任意波形发生器的研究与设计详细说明文档
    非常详细的资料,介绍了FPGA的DDS技术,文档内有verilog的源代码,可以直接使用,非常适合初学者,快点下载吧。ABSTRACTWith the rapid development of science and technology, electronic measurementtechnique has been widely used in each field such as electronics, machinery, medical,measurement and space. The electronic measurement technology needs to use variousforms of high quality source. So arbitrary waveform generator has very importantpractical significance. The development of arbitrary waveform generator, which basedon Direct Digital Synthesis is discussed in this paper. The generator can produce notonly the conventional waveform such as sine wave, square, triangle wave andsawtooth wave, but the arbitrary waveform, thus this can meet the need of the studyThe work of this paper is as follows:( 1) The domestic and overseas status about the arbitrary waveform generator arediscussed. Clarify the various ways of this synthesis technology of frequency andtechnical comparison, and direct digital frequency synthesis technology is selected toresearch(2)Introduce the hardware design in this system structure and the realization offunction, and a detailed description is given about system components. The singlechip microcomputer is chosen as control module, we use FPga as the coretechnology to realize DDs. The periphery of the circuit design and interfacetechnology is analyzed(3) This paper analyses the working principle, characteristics and technical indexesof the DDS. The design is based on EP1C3T144C8 FPGA chips. Realize DDSfunction through the use of phase accumulator and waveform RoM, and apply enablemodule and the determinant keyboard to present the flexible output of variouswaveform(4) The system test data is given. The reason caused by stray and noise influencingthe spectral purity is analyzedKEY WORDS: Electronic measurement; arbitrary waveform generator; DDS; SCM; FPGA华南师范大学学位论文原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确的方式标明。本人完全意识到此声明的法律结果由本人承担。论文作者签名:日期:29年6月5日学位论文使用授权声明本人完全了解华南师范大学有关收集、保留和使用学位论文的规定,即:研究生在校攻读学位期间论文工作的知识产权单位属华南师范大学。学校有权保留并向国家主管部门或其指定机构送交论文的电子版和纸质版,允许学位论文被检索、查阅和借阅。学校可以公布学位论文的全部或部分内容,可以允许采用影印、缩印、数字化或其他复制手段保存、汇编学位论文。(保密的论文在解密后遵守此规定)保密论文注释:本学位论文属于保密范围,在年后解密适用本授权书。非保密论文注释:本学位论文不属于保密范围,适用本授权书论文作者签名:导师签名+1期:10年6月5日日期:22)年b月S日第一章绪论本章主要介绍任意波形发生器的研究意义,以及发展的概况与趋势,并介绍本设计所需要做的软硬件工作,提出设计需要实现的目标。11任意波形发生器的研究意义任意波形发生器( Arbitrary Waveform Generator,AWG)实际上是一种多波型的信号发生器,它不仅能产生正弦波、方波、三角波、斜波和指数波等常规波形,也可以表现出载波调制的多样化,如:产生调频、调幅、调相和脉冲调制等。更可以通过计算机软件实现波形的编辑,从而生成用户所需要的各种任意波形,来满足各种实验研究的需要随着科学技术的飞速发展,电子测量技术被广泛应用在电子、机械、医疗、测控及航天等各个领域。许多电子系统,甚至电子器件只有在一定的电信号作用下,其性能才能显露出来。另一方面,一些电器设备在研究和生产过程中也少不了信号源,它们借助信号源通过测量来鉴定其性能的优劣。所以许多现代电子设备和系统的功能如何,都直接的取决于信号源质量的高低,如何产生高稳定度、高准确度的信号是任意波形发生器研制的关键。因此,信号发生器的表现就至关重要。我国的电子测量技术起步较晚,虽然在一些领域也取得了许多突破性进展,但是与世界先进水平相比,仍然存在着很大的差距。因此提高国内电子测量仪器的研制水平,加强核心技术的研发,对我国电子测量技术的发展,有着非常重要的意义。12任意波形发生器的发展概况最早的信号发生器主要采用RC构成振荡电路。如1928年美国先后生产出的调幅信号发生器与调频信号发生器。20世纪40年代许多国家已经开始研究脉冲信号发生器。1962年美国 Wavetek公司在RC电路的基础上,又推出了函数发生器产品。在60年代初,起源于通信领域的频率合成技术也引用到信号源上,出现了合成信号发生器。自80年代以来人们又将微机技术引入信号源,出现了任意波形发生器。早期的信号发生器主要采用模拟电子技术,电路结构复杂,工艺不够成熟,因此存在着如:漂移较大,输岀波形的幅度稳定性差,模拟器件构成的电路尺寸大、价格贵、功耗大等缺点。80年代以后,现代电子、计算机和信号处理等技术的发展,极大的促进了数字化技术在电子测量仪器的应用。高集成化微处理器的出现,增大了更复杂波形产生与波形稳定的操控性。这时期的波形发生器多以软件为主,实质是采用微处理器对DAC的程序控制,从而得到各种所需波形。任意波形发生器的实现方案主要有程序控制输出、DMA输出、可变时钟计数器寻址和直接数字频率合成等多种方式2。目前任意波形发生器的研制主要基于DDS(直接数字频率合成)技术,与传统的频率合成器相比,DDS具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在通信、测量与电子仪器领域,是实现设备全数字化的一个关键技术。近20年发展迅速,因此许多国家都在进行DDS专用芯片的研制。其中AD公司较为突出,如常见的AD9852、AD9858等产品,现在又推出了性能更强大的AD9952、AD9958、AD9912。其中AD9912包含可提供谐波杂散抑制的辅助低功耗DDS内核,以及48位频率调谐字和内置比较器,具有1GSPS内部时钟速率和高达400MHz直接输出。基于DDS技术的任意波形发生器的发展也同步进行,目前的任意波形发生器的产品结构形式主要有三种:独立仪器结构形式、PC总线插卡式和VⅪI模块式。近几年国际任意波形发生器技术主要发展,除了输出波形频率的提高和更方便的波形输入外,便是与ⅴX资源的结合。在测量和产生复杂的任意波形时,VXI系统资源在这些应用中具有较为明显的优势,尤其对自动测试系统(ATE特别有用。任意波形发生器在商业研发生产中,以 Agilent公司和 Tektronix公司最具有代表性,其任意波形发生器产品已经形成相当的市场占有率,并以优异的产品技术,引领着该领域的发展。如: Agilent公司的N6030A任意波形发生器,它拥有15位的垂直分辨率,125GS/s的采样频率,500MH的输出频率。 Tektronixκ公司更是于2008年推出了性能与速度更为优异的产品:AWG700。采样频率高达24GS/s,也可以做到96GHz有效RF频率输出。不仅如此,该产品还提供了高达10位的垂直分辨率:10位(无标记输出)或8位(带有两个标记输出);高达64M(64:80000点的记录长度,提供了更长的数据流;低至100f分辨率的边沿定时位移控制;16000步序列功能,创建无穷大波形循环、跳转和条件分支。能够生成高速串行信号、多电平信号、为存储设备测试生成信号、宽带RF信号。我国从90年代才开始研制任意波形发生器,比较有代表性的产品有北京普源精电科技有限公司生产的DG3121A,它拥有14位的垂直分辨率、300MSa/的采样率和120MHz的最高频率输出。它是业界第一个具备了数字逻辑输出功能的任意波形发生器。指标在国产的函数/任意波形发生器中处于优势地位,在同类产品中,具有最完备的通信接口,具备RS232,USB,GPIB,LAN。但比起同类产品 Agilent公司的33250A在脉冲频率和频率稳定度等方面还有很大差距。不过普源还是在技术长有不少的创新,比如研制出了业界首台混合信号任意波形发生器。北京凯弘仪器生产的基于DDS的函数发生器就很有特色,由于内置了衰减器,能够实现最小01mVpp的输出和00ldB的分辨率。总体而言,国产任意波形发生器自研制以来取得了巨大的进步,但是在最高采样率,最大输出频率、频率稳定度和准确度等指标上和世界先进水平还存在着较大的差距1.3发展趋势由于电子测量技术及其他部门对各类信号发生器的广泛需求及电子技术的迅速发展,促使信号发生器种类日益增多,性能日益提高,尤其随着70年代微处理器的出现,更促使信号发生器向着自动化、智能化方向发展。现在,许多信号发生器除了带有微处理器,因而具备了自校、自检、自动故障诊断和自动波形形成和修正等功能外,还带有IEE488或RS232总线,可以和控制计算机及其他测量仪器一起方便地构成自动测试系统。今后,任意波形发生器在较高的取样率,分辨率,记录长度和线性等方面功能会更强,任意波形发生器在射频和无线测试领域将会获得部分市场。当前信号发生器总的趋势是向着宽频率覆盖、高频率精度、多功能、多用途、自动化和智能方向发展14本文的主要工作硬件设计●电源模块电路的设计:各部件工作电压不同,有5V、3.3V、1.5V三种情况,因此须设计出满足各部件正常工作的电源模块。●单片机系统与接口电路设计单片机作为控制模块,实现与上位机信息传递与通信等各种功能,须设计出单片机的控制模块与相关接口电路●D/A转换与滤波电路的设计D/A转换器与滤波是整个电路的后续处理,D/A转换器实现波形的模拟输出、滤波器则选择合适的滤波器完成对信号的修整。●基于FPGA的DDS模块电路的设计FPGA实现DDS功能是整个设计的关键部分,根据相关原理,设计适合的逻辑图。●整机PCB板设计用 PROTEL DXP2004绘制电路板。软件使用●用Kei1C51对单片机传递信息在 Keil c51环境下,编写程序,完成计算机与单片机的通讯,Kei1提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(μ vision)将这些部份组合在起,为单片机的使用提供良好的平台。●在 QuartusⅡ下对FGA进行设计在该环境下,实现FPGA的DDS电路设计实现目标波形要求:常规波形(正弦波、方波,三角波等)、任意波形存储深度:1—1024个点幅度分辨率:8位输出频率范围:1Hz1MHz(固定波形)设计目标:不仅可以生成方波、三角波、正弦波等标准波形,而且还要可以生成用户所需要的任意波形,同时输出波形的频率和幅度均可编程控制。4第二章任意波形发生器的理论分析本章首先介绍了频率合成技术的相关情况,并对三种不同形式的频率合成技术进行分析。同时系统的阐述了DDS的基本组成结构、工作原理、工作特点与技术指标,为DDS的构建打下理论基础。21频率合成技术简介频率合成是指从一个高稳定的参考频率,经过各种技术处理,生成一系列稳定的频率输出。频率合成的概念就是由一个或几个参考频率通过一些转换,产生个或多个频率信号的过程。频率合成技术一般分为直接式(DS)、间接式(PLL)和直接数字式(DDS)三种基本形式。早期的频率合成采用直接式的方式,是由一个或多个晶体震荡器经分频、倍频、混频对一个或几个基准频率进行加、减、乘、除运算产生所需要的频率信号,并通过滤波器产出,这是最早的频率合成信号源的方法。目前该方法仍在使用,主要是因为它频率转换速度、相位噪声低,比较容易实现4。但是该方式涉及的合成器体积过于庞大,而且成本较高,结构复杂、产生任意波形的可控性较低间接合成式是基于锁相环的原理,即PLL。它与前者相比,输出频率的稳定度和准确度都有明显的提高,频谱纯度等性能也有较大改善。主要是因为信号源的振荡频率被固定在频率计数器的时基上,也就是说以稳定度高的振荡器为基准。因此,锁相环的输出频率就与基准频率一致,振荡器输出信号和参考信号之间的相位差为固定的常数,而且锁相环的突出优点是能够抑制叠加到输入信号上的噪声。这是直接式频率合成方法所不能达到的。PLL还有体积小、性价比较高等一系列优点。但是PLL技术也有明显的缺点,采取闭环控制,系统的输出频率改变后,重新达到稳定的时间也就比较长,一般为毫秒级,很难满足高频率分辨率与快速转换率同时具备的要求,因此也有明显瑕疵。直接数字频率合成技术从原理上实现了突破。前两种方法都是通过对基准频率进行运算得出,而DDS技术则是从相位的概念进行频率合成。它按一定的相位间隔,将待产生的波形幅度的二进制数据存储于高速存储器作为查找表,用参考频率源(一般为晶体振荡器)作为时钟,用频率控制字决定每次从查找表中取出波形数据的相位间隔,以产生不同的输出频率,对取出的波形数据通过高速D/A转换器来合成出存储在存储器内的波形。直接数字频率合成技术的主要优点是输出相位连续、相对带宽较大、频率分辨率很高、可编程、准确度和稳定度都比较高。DDS技术是利用查表法来产生波形,而通过修改存储在ROM里的数据,就可以产生任意波形。所以它不仅能产生正弦、余弦、方波、三角波和锯齿波等常见波形,而且还可以根据需要利用各种编辑手段,产生传统函数发生器所不能产生的真正意义上的任意波形。DDSDirect Digital Synthesis)的概念首先由美国学者 J.Tiemcy, C. M.Rader和B.Gold在1971年提出,但限于当时的技术和工艺水平,DDS技术仅仅限于理论研究,而没有应用到实际中去。近20年来,随着Ⅴ LSI( Very Large Scale Integration),FPGA( Field ProgrammableGates Array)以及DSP( Digital Signal Processing)的发展,这种结构独特的频率合成技术得到了飞速发展。目前该技术已经被广泛用于接收机本振、信号发生器、通信系统、雷达系统等相关领域中。22DDS的基本原理和工作特点22DDS的基本结构DDS( Direct Digital Synthesis技术设计思想是基于数值计算信号波形的抽样值来实现频率合成的。它包括数字器件与模拟器件两部分,主要有相位累加器ROM波形查询表、数模转换器组成。其基本框图如下。相位累加器波形RoMD/A转换器低通滤波器控制字K输出时钟图21DDS结构框图(1)相位累加器是DDS的核心部分。一般是由数字全加器和数字寄存器组成实现相位累加。如下图所示。N频率挖制字K加法器备存器时钟频率c图22相位累加器结构框图般DDS的累加器都釆用二进制,线性数字信号通过相位累加器实现逐级的累加。假设累加器字长为N,频率控制字为K,控制时钟频率为f,系统在同
    2020-12-09下载
    积分:1
  • 绕翼型网格生成源
    基于椭圆方程绕,翼型网格生成源程序,生成二维结构网格。
    2020-12-04下载
    积分:1
  • MATLAB下求两幅图像的峰值信噪比(PSNR)
    MATLAB下求两幅图像的峰值信噪比(PSNR)。讨厌在网上下到骗分的东西。小程序,保证能运行。
    2020-06-24下载
    积分:1
  • 电力系统继电保护 课设计 论文
    电力系统继电保护 课程设计 论文有详细过程目录第一篇绪论第二篇原始资料分析…第三篇相关理论第四篇35KV线路相间短路的电流与残压…第五篇保护的配置与整定计算第六篇对全网保护的评价34第七篇结束语第八篇参考文献36第一篇绪论1.1设计题目35K单侧电源环网相间短路保护的配置与整定计算12设计任务1环网保护的配置与整定计算:针对本题,即保护1~8的配置与整定计算;2.单侧电源的单回线路保护的配置与整定计算:针对本题,即保护9的配置与整定计算;3.平行双回线路的配置与整定计算:针对木题,即保扩11~-14的配置与整定计算4.对全网保护进行评价:5绘制相关图纸6编写设计论文13设计综述通过对原始数据进行分析,结合所学知识以及查阅资料说的知识与技术,分别针对单侧电源单回线路、单侧电源平行双回线路和单侧电源环网发生相间短路故障时,进行了倮护的配置与整定计算,最终设计出一套完整的保护方案。第二篇原始资料分析2.1系统接线图如图2-1、图2t=05卩=1000kw35N单电源环网接线图(第3题cosc=0. 8NKL-10200568200/35BoKo四a「a2XSFL-8000/35=1500kwcs中=08■sL-250/35800MTi2XQF-25-2 T320Km35c0s中=8口2XSHL2000/35T62XQ252口QQT9t=05S-1600/35n=8bQGs=08卩=1500KM0so=082XQF-122ADkm102XSH31500352XSFL-15000/35SUMtL030Km卩=1500KwS200/350s中=08图2-12.2设备与线路的型号及参数采用标幺值进行计算,因为标幺值计算可以直观的判断结果的合理性,可以简化计算,运算方便,不用进行电压等级转换。这里采用采用标幺值的近似计算方法2.2.1基准值SB=100MWAUB1OKVUB=10. 5Kv, IB0=5.199%A,ZaUB10.51.1039B③*10.510035KV:Up-=37KY1001.560KAB13.69Q3B√337B157121B325040320.9375087661169xXI2]|[l3.25U0403209375H2○~T2T8325004D3202414B3X~八x040320.4141023G4EXAT9053308GX087661169X3250G60.533307873X1610TX15 Ti20876G图22.2.2发电机发电机型号本题代号CosφXGQF2-25-2G1G2G3G40.1160.80.4032QF2-12-12c5(G60.11120.7873计算公式xG=Xd*n一米COsq算例(QF2-25-2):X6=0.116*1000.80.1032252.2.3变压器变压器利号本题代号Uk%TSjL1-2000/35T71011126.53.25SFL1-8000/358.00.9375SjL1-1600/356.54.0625SFL1-31500/35T3T48.00.254SFL1-15000/35T5T68.015.00.5333J1-1250/35255.2计算公式:100算例(SJL1-2000/35):Xr1003.251002.2.4电抗器电抗器型号X1%NKL-10-200-66%0.2101.571计算公式XL=X1%水1*N算例:XL=6%5.499100.210.52.2.5线路线路名0BX10CD300.8766DE401.16900.40.58437FE1.023CG1.169CH(单回线)300.8766计算公式X*=X0米LB算例(Xp):XD=0.4求30*100=0.876637*372.3指定参数KA=0KK,=1.2relK=1第三篇相关理论31对电力系统继电保护的基木要求动作于跳闸的继电保扩,在技术上一般应满足四个基木要求,即选择性、速动性、灵敏性和可靠性;(1)选择性继电保护动作的选择性是指保护动作装置动作吋,仅将故障元件从屯力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。(2)速动性快速的切除故障可以提高电力系统并列运行的稳定性,减少用户在电压降低的情况下工作的时间,以及缩小故障元件的损坏程度。因此,在故障发生时,应力求保护装置能迅速动作切除故障。(3)灵敏性继电保护的灵敏性,是指对于其保扩范围内发生故障或者不正常运行状态的反应能力。满足灵敏性要求的保护裝置应该是在事先规定的保护范围内部故障时,不论短路点的位冒、短路的类型如何,以及短路点是否有过渡电阻都能敏锐感觉,正确反应。(4)可靠性保护装置的可靠性是指在该保护装置规定的保护范围内发生了它应该动作的故障时,它不应该拒绝动作,而在任何其他该保护不该动作的情况下,则不应该误动作。32运行方式电力系统的运行方式包括:最大运行方式,最小运行方式和主要运行方式最大运行方式是指(1)流过保护的短路电流为最大的运行方式:(2)根据系统最大负荷的需要,把系统中仝部的发电设备都投入运行的方式(3)在本设计中,系统中发电机和变压器全部投入,而且环网开环运行的运行方式;最小运行方式是指:(1)流过保护的短路电流最小的运行方式:(2)根据系统最小负荷的需要,投入与之相应的发电设备的运行方式(3)在本设计中,系统所带负荷最小,切除对短路电流影响最大的台发电机或变压器,而且环网闭环运行时的运行方式;主要运行方式是指:1)在一年之中,运行时间最长的运行方式;(2)根据系统负荷的需要,投入相应的发电设备的运行方式3)在本设计中,系统中的发电设备全部投入运行,而且环网闭环运行的运行方式3.3电流三段整定原则和校验原则电流Ⅰ段保护的整定原则及灵敏度校验原则(1)整定原则:按躲开本线路末端的最大短路电流来整定:2)校验原则:按最小运行方式下两厢短路吋的保护范围大亍被保护线路全长的15%来校验。按上述方法,若灵敏度不够,则采川电压电流联锁速断保护电流Ⅱ段保护的整定原则及灵敏度校验原则(1)整定原则:按躲开下一级各元件电流速断保护的最大动作值来整定(2)校验原则:按最小运行方式下,线路末端发生两相短路时有烂够的反应时间来校验,若按上述灵敏度不够,则首先考虑相继动作能否满足,若仍不满足则考虑与下一级线路电流Ⅱ段相配合,若仍不满足,则按灵敏度的要求进行反推,但必须满足选择性的要求:若仍不满足,这采用低电压启动的电流Ⅱ段保护电流∏段保扩的整定原则及灵敏度校验原则:1)整定原则:按躲开流过倮护安装处的最大负荷电流来整定。(2)校验原则:当作为本线路的主保护时,应采用最小运行方式下本线路末端两相短路时的电流进行校验;当作为相邻线路的后备保护吋,则应采用最小运行方式下相邻线路末端两相短路时的电流进行校验,按上述方法灵敏度不满足时,则采用低电压启动的过电流保护。34三段式电流速断保护的动作时限电流Ⅰ段为0s,电流Ⅱ段若与下一级线路的i段相配合,则为0.5s;电流Ⅱ段若与下一级线路的Ⅱ段相配合,则为1s电流Ⅲ段按吋限的阶梯原则来选择。35电流电压联锁速断保护瞬时电流速断保护具有很好的快速性,但当系统运行方式变化很大时,保护范围很小,甚至没有保护区。在不增加保护动作时限的条件下,可以增加一个低电压继电器构成电流电压联锁速断保护增长保护范围。由亍采用了电流和电压两个测量元件,在外部短路故障吋,只要冇个测量元件动作,保护就能保证选择性。动作电流是在正常运行方式下,保护范围末端三相短路故障时流过保护的短路电流。动作电压是在正常运行方式下,保护范围末端三项短路时,母线上的残余电压。36横联差幼电流方向保护平行双叫线往往用横差保护作为主保护的补充。樻联差动电流方向保护是反应平行双冋线电流不同前动作的保护。当1线电流I1与Ⅱ线电流I存在I1-Im>0关系时,判别I线路发生短路故障,Ⅰ线路断路器动作。否则Ⅱ线路断路器动作3.7电流平衡保护电流平衡保护是用电流平衡继电器来判別平行线路屮的故障线路。电流平衡保护是按比较平行双回线中电流的绝对值而动作的,同时还引入电压量进行制动3.8延时电流电压保护由于电流保护受系统运行方式变化影响很大,为了在不増加动作时限的前提卜,提高保护的灵敏性,可应采用电流电压保护。延时电流电压保护电压定值按保证测量元件范围末端故障吋冇足够的灵敏系数整定。电流定值按保护本线路木端故障有规定灵敏系数整定,还应与相邻线路保护测量元件定值配合。时间定值整定方法与阶段式电流保护相同第四篇35K∨线路相间短路的电流与残压41单侧电源单回线路41.1最大运行方式1电网接线图,(如图4-1)0A032040820403202414093515712177B32504032D2414GeR-9 i MLT05333078730.9375X1169H60533307X~X回回T6图4-12等效电网接线图,将电源电抗进行串并联计算,得Xd>:=0.1588,(如图42)15712177B3.25c图4-23.电流与残压计算(1)首端短路:(3)Kmax0.5781Xd∑+(XL)0.1588+(1571)3)(X1)=0.5781*1.571=09082
    2020-12-04下载
    积分:1
  • 磁法勘探球体异常体正演序(源码)
    fortran 编的 磁法正演程序 带实例 带完整工程文件
    2020-07-04下载
    积分:1
  • 696518资源总数
  • 104591会员总数
  • 57今日下载