登录
首页 » Others » MIMO注水功率分配MATLAB程序

MIMO注水功率分配MATLAB程序

于 2021-05-06 发布
0 262
下载积分: 1 下载次数: 6

代码说明:

仿真了MIMO在自由空间信道条件下注水功率分配方式,详细的M文件及注释

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • WPF 登录界面
    一星空为主题的比较漂亮的登录界面,在牛人基础上改的
    2020-12-02下载
    积分:1
  • ansys 热场分析
    ansys中的温度场的仿真,涉及到传热、对热的仿真。加载的载荷为对流热。
    2020-12-04下载
    积分:1
  • TMS320 VC5509A 各种代码例
    [代码及相关实验]---代码为C语言编写1、CPU看门狗实验2、LED跑马灯实验3、CPU Timer定时器实验4、实时时钟实验5、AD转换实验6、扩展SDRAM读写实验7、扩展FLASH读写实验8、快速傅立叶变换(FFT)实验9、FIR滤波器实验10、IIR滤波器实验11、自适应滤波器(FIRLMS)实验12、键盘扫描实验13、外部中断输入实验14、AIC23播音实验15、LCD显示实验16、串口通信实验17、USB2.0通信实验18、网络通信实验19、SD卡读写实验20、MMC卡读写实验21、数字图像直方图实验22、数字图像边缘检测实验23、数
    2020-07-04下载
    积分:1
  • 中值滤波算法-matlab源码
    在matlab中实现中值滤波算法的源代码,可以分别在一维、二维和三维中使用,可以自由调节滤波窗口的大小,方便对数据进行处理。
    2021-05-07下载
    积分:1
  • 数字信号处理理论算法与实现(胡广书).的Matlab代码及参考文献
    《数字信号处理理论、算法与实现》是2003年清华大学出版社出版的图书,作者是胡广书。绪论O.1数字信号处理的理论O.2数字信号处理的实现0.3数字信号处理的应用O.4关于数字信号处理的学习参考文献上篇经典数字信号处理第1章离散时间信号与离散时间系统1.1离散时间信号的基本概念1.1.1离散信号概述1.1.2典型离散信号1.1.3离散信号的运算1.1.4关于离散正弦信号的周期1.2信号的分类1.3噪声1.4信号空间的基本概念1.5离散时间系统的基本概念1.6LSI系统的输入输出关系1.7LSI系统的频率响应1.8确定性信号的相关函数1.8.1相关函数的定义
    2020-12-11下载
    积分:1
  • SQL标准(ISO/IEC 9075) 2016
    1-7,9-11,13,14,其中5-7为2016年制定的,其他为2011年及以前制定的。
    2020-12-09下载
    积分:1
  • 水箱液面模糊控制及Matlab仿真实现
    对于不确定输入的水箱液面控制问题,由于输入的不确定性,应用传统的PID控制方法很难达到理想的效果.因此,实际应用中常采用模糊控制的算法.本文介绍了一种基于模糊算法的水箱液面模糊控制系统, 并在MATLAB 的环境下对该系统的实际运行效果进行了仿真模拟" 结果显示此种控制方法很好的完成了控制任务.
    2021-05-06下载
    积分:1
  • _新代视频压缩码标准_H.264_AVC(毕厚杰主
    _新一代视频压缩编码标准_H.264_AVC(毕厚杰主编)
    2020-06-27下载
    积分:1
  • 平面变压器3D仿真资料
    采用COMSOL软件,对平面变压器的仿真过程进行叙述,让大家了解平面变压器的仿真流程,是个很好的指导教材Solved with COMSOL Multiphysics 5.0Results and discussionThe magnetostatic analysis yields an inductance of 0. 1l mH and a dc resistance of0. 29 mQ2. Figure 2 shows the magnetic flux density norm and the electric potentialdistributionvolume: Coil potentiaL()Volume: Magnetic flux density norm (t▲0.07▲2.88×10-42.51.50.03050.01V656×107v0igure 2: Magnetic flux density norm and electric potential distribution for themagnetostatic analysisIn the static (DC) limit, the potential drop along the winding is purely resistive andcould in principle be computed separately and before the magnetic flux density iscomputed. When increasing the frequency, inductive effects start to limit the currentand skin effect makes it increasingly difficult to resolve the current distribution in thewinding. At sufficiently high frequency, the current is mainly flowing in a thin layernear the conductor surface. When increasing the frequency further. capacitive effectscome into play and current is flowing across the winding as displacement currentdensity. When going through the resonance frequency, the device goes from behavingas an inductor to become predominantly capacitive. At the self resonance, the resistivelosses peak due to the large internal currents Figure 4 shows the surface current3 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.0distribution atl MHz. Typical for high frequency the currents are displaced towardsthe edges of the conductor.freq(1)=1.0000E6_Surfaee: Surface-current density norm (A/)▲18618Q16010¥1.02Figure 3: Surface current density at I MHz (below the resonance frequency)Figure 4 shows how the resistive part of the coil impedance peaks at the resonancefrequency near 6MHz whereas Figure 5 shows how the reactive part of the coiimpedance changes sign and goes from inductive to capacitive when passing throughthe resonance4 MODELING OFA3DINDUCTORSolved with COMSOL Multiphysics 5.0Global: Lumped port impedance(Q2)d port impedance7.5G6.583275655545352510.10.20.30.40.509igure 4: Real part of the electric potential distribution5 MODELING OF A INDUCTORSolved with COMSOL Multiphysics 5.0Global: Lumped port impedance(Q2)35000Lumped port impedance200001000050000500010000-1500020000250000.10.20.30.40.50.60.70.809Figure 5: The reactive part of the coil impedance changes sign hen passing through theresonance frequency, going from inductive to capacitiveModel library path: ACDC_Module/Inductive_ Devices_and_coils/inductor 3dFrom the file menu. choose newNEWI In the new window click model wizardMODEL WIZARDI In the model wizard window click 3D2 In the Select physics tree, select AC/DC> Magnetic Fields(mf)3 Click Add4 Click StudyMODELING OF A3D NDUCTORSolved with COMSOL Multiphysics 5.05 In the Select study tree, select Preset Studies>StationaryGEOMETRYThe main geometry is imported from file. Air domains are typically not part of a CaDgeometry so they usually have to be added later. For convenience three additionaldomains have been defined in the CAd file. These are used to define a narrow feed gapwhere an excitation can be appliedport l(impl)I On the model toolbar, click Import2 In the Settings window for Import, locate the Import section3 Click Browse4 Browse to the models model library folder and double-click the filenductor 3d. mphbinSphere /(sphl)I On the Geometry toolbar, click Sphere2 In the Settings window for Sphere, locate the Size section3 In the Radius text field, type 0.2ick to expand the Layers section. In the table, enter the following settingsLayer nameThickness(m)ayer0.055 Click the Build All Objects buttonForm Union(fin)i On the Geometry toolbar, click Build AllClick the Zoom Extents button on the Graphics toolbar7 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.03 Click the Wireframe Rendering button on the Graphics toolbarThe geometry should now look as in the figure below0.1-0.10.20.0.0.1y0.0.2Next, define selections to be used when setting up materials and physics Start bdefining the domain group for the inductor winding and continue by adding otheruseful selectionsDEFINITIONSExplicitI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Winding3 Select Domains 7,8 and 14 onlyI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Gap3 Select domain 9 onlI On the Definitions toolbar, click Explicit8 MODELING OF A3DINDUCTORSolved with COMSOL Multiphysics 5.02 In the Settings window for Explicit, in the Label text field, type core3 Select Domain 6 onlyExplicit 4I On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type InfiniteElements3 Select Domains 1-4 and 10-13 onlyExplicit 5I On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Non-conducting3 Select Domains 1-6 and 9-13 onlyI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Non-conductingwithout Ie3 Select Domains 5, 6, and 9 only.Infinite Element Domain /(iel)Use infinite elements to emulate an infinite open space surrounding the inductorI On the definitions toolbar click Infinite element domain2 In the Settings window for Infinite Element Domain, locate the Domain Selectionsection3 From the Selection list. choose Infinite Elements4 Locate the Geometry section From the Type list, choose SphericalNext define the material settingsADD MATERIALI On the Model toolbar, click Add Material to open the add Material window2 Go to the Add material window3 In the tree, select AC/DC>Copper.4 Click Add to Component in the window toolbar9 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.0MATERIALSCopper(mat/)I In the Model Builder window, under Component I(comp l)>Materials click Copper(matD)2 In the Settings window for Material, locate the Geometric Entity Selection section3 From the Selection list, choose windingADD MATERIALI Go to the Add Material window2 In the tree. select built-In>Air3 Click Add to Component in the window toolbarMATERIALSAir(mat2I In the Model Builder window, under Component I(comp l)>Materials click Air(mat2)2 In the Settings window for Material, locate the Geometric Entity Selection section3 From the Selection list, choose Non-conductingThe core material is not part of the material library so it is entered as a user-definedmateriaMaterial 3(mat3)I In the Model Builder window, right-click Materials and choose Blank Material2 In the Settings window for Material, in the Label text field, type Core3 Locate the geometric Entity Selection section4 From the selection list choose Core5 Locate the Material Contents section. In the table, enter the following settingsPropertName Value Unit Property groupElectrical conductivity sigma0S/IBasicRelative permittivity epsilonrBasicRelative permeability mur1e3Basic6 On the model toolbar. click Add Material to close the Add Material windowMAGNETIC FIELDS (MF)Select Domains 1-8 and 10-14 only0MODELING OF A 3D INDUCTOR
    2020-12-10下载
    积分:1
  • 基于Django1.9.5开发个简单的博客系统
    1.页面美化,加入了自定义样式和最新bootstrap2.文章评论功能,并且显示每篇文章的评论数3.文章标签,侧边栏会显示标签云,具体还有一个实现标签云的算法4.分类目录,最新文章,评论列表的显示5.文章归档功能,按照月份归档6.实现热门文章功能,根据点击率来排名7.文章的分页显示,每页大小可后台设置8.给文章评分,顶和踩9.全文搜索功能10.引入富文本编辑器,让格式更漂亮,并支持代码高亮等功能11.全面集成redis缓存系统,提升系统速度12.i18n国际化13.集成xadmin的后台管理系统,管理员维护博客。
    2020-06-29下载
    积分:1
  • 696518资源总数
  • 106265会员总数
  • 10今日下载