登录
首页 » Others » 平面变压器3D仿真资料

平面变压器3D仿真资料

于 2020-12-10 发布
0 239
下载积分: 1 下载次数: 3

代码说明:

采用COMSOL软件,对平面变压器的仿真过程进行叙述,让大家了解平面变压器的仿真流程,是个很好的指导教材Solved with COMSOL Multiphysics 5.0Results and discussionThe magnetostatic analysis yields an inductance of 0. 1l mH and a dc resistance of0. 29 mQ2. Figure 2 shows the magnetic flux density norm and the electric potentialdistributionvolume: Coil potentiaL()Volume: Magnetic flux density norm (t▲0.07▲2.88×10-42.51.50.03050.01V656×107v0igure 2: Magnetic flux density norm and electric potential distribution for themagnetostatic analysisIn the static (DC) limit, the potential drop along the winding is purely resistive andcould in principle be computed separately and before the magnetic flux density iscomputed. When increasing the frequency, inductive effects start to limit the currentand skin effect makes it increasingly difficult to resolve the current distribution in thewinding. At sufficiently high frequency, the current is mainly flowing in a thin layernear the conductor surface. When increasing the frequency further. capacitive effectscome into play and current is flowing across the winding as displacement currentdensity. When going through the resonance frequency, the device goes from behavingas an inductor to become predominantly capacitive. At the self resonance, the resistivelosses peak due to the large internal currents Figure 4 shows the surface current3 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.0distribution atl MHz. Typical for high frequency the currents are displaced towardsthe edges of the conductor.freq(1)=1.0000E6_Surfaee: Surface-current density norm (A/)▲18618Q16010¥1.02Figure 3: Surface current density at I MHz (below the resonance frequency)Figure 4 shows how the resistive part of the coil impedance peaks at the resonancefrequency near 6MHz whereas Figure 5 shows how the reactive part of the coiimpedance changes sign and goes from inductive to capacitive when passing throughthe resonance4 MODELING OFA3DINDUCTORSolved with COMSOL Multiphysics 5.0Global: Lumped port impedance(Q2)d port impedance7.5G6.583275655545352510.10.20.30.40.509igure 4: Real part of the electric potential distribution5 MODELING OF A INDUCTORSolved with COMSOL Multiphysics 5.0Global: Lumped port impedance(Q2)35000Lumped port impedance200001000050000500010000-1500020000250000.10.20.30.40.50.60.70.809Figure 5: The reactive part of the coil impedance changes sign hen passing through theresonance frequency, going from inductive to capacitiveModel library path: ACDC_Module/Inductive_ Devices_and_coils/inductor 3dFrom the file menu. choose newNEWI In the new window click model wizardMODEL WIZARDI In the model wizard window click 3D2 In the Select physics tree, select AC/DC> Magnetic Fields(mf)3 Click Add4 Click StudyMODELING OF A3D NDUCTORSolved with COMSOL Multiphysics 5.05 In the Select study tree, select Preset Studies>StationaryGEOMETRYThe main geometry is imported from file. Air domains are typically not part of a CaDgeometry so they usually have to be added later. For convenience three additionaldomains have been defined in the CAd file. These are used to define a narrow feed gapwhere an excitation can be appliedport l(impl)I On the model toolbar, click Import2 In the Settings window for Import, locate the Import section3 Click Browse4 Browse to the models model library folder and double-click the filenductor 3d. mphbinSphere /(sphl)I On the Geometry toolbar, click Sphere2 In the Settings window for Sphere, locate the Size section3 In the Radius text field, type 0.2ick to expand the Layers section. In the table, enter the following settingsLayer nameThickness(m)ayer0.055 Click the Build All Objects buttonForm Union(fin)i On the Geometry toolbar, click Build AllClick the Zoom Extents button on the Graphics toolbar7 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.03 Click the Wireframe Rendering button on the Graphics toolbarThe geometry should now look as in the figure below0.1-0.10.20.0.0.1y0.0.2Next, define selections to be used when setting up materials and physics Start bdefining the domain group for the inductor winding and continue by adding otheruseful selectionsDEFINITIONSExplicitI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Winding3 Select Domains 7,8 and 14 onlyI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Gap3 Select domain 9 onlI On the Definitions toolbar, click Explicit8 MODELING OF A3DINDUCTORSolved with COMSOL Multiphysics 5.02 In the Settings window for Explicit, in the Label text field, type core3 Select Domain 6 onlyExplicit 4I On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type InfiniteElements3 Select Domains 1-4 and 10-13 onlyExplicit 5I On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Non-conducting3 Select Domains 1-6 and 9-13 onlyI On the Definitions toolbar, click Explicit2 In the Settings window for Explicit, in the Label text field, type Non-conductingwithout Ie3 Select Domains 5, 6, and 9 only.Infinite Element Domain /(iel)Use infinite elements to emulate an infinite open space surrounding the inductorI On the definitions toolbar click Infinite element domain2 In the Settings window for Infinite Element Domain, locate the Domain Selectionsection3 From the Selection list. choose Infinite Elements4 Locate the Geometry section From the Type list, choose SphericalNext define the material settingsADD MATERIALI On the Model toolbar, click Add Material to open the add Material window2 Go to the Add material window3 In the tree, select AC/DC>Copper.4 Click Add to Component in the window toolbar9 MODELING OF A 3D INDUCTORSolved with COMSOL Multiphysics 5.0MATERIALSCopper(mat/)I In the Model Builder window, under Component I(comp l)>Materials click Copper(matD)2 In the Settings window for Material, locate the Geometric Entity Selection section3 From the Selection list, choose windingADD MATERIALI Go to the Add Material window2 In the tree. select built-In>Air3 Click Add to Component in the window toolbarMATERIALSAir(mat2I In the Model Builder window, under Component I(comp l)>Materials click Air(mat2)2 In the Settings window for Material, locate the Geometric Entity Selection section3 From the Selection list, choose Non-conductingThe core material is not part of the material library so it is entered as a user-definedmateriaMaterial 3(mat3)I In the Model Builder window, right-click Materials and choose Blank Material2 In the Settings window for Material, in the Label text field, type Core3 Locate the geometric Entity Selection section4 From the selection list choose Core5 Locate the Material Contents section. In the table, enter the following settingsPropertName Value Unit Property groupElectrical conductivity sigma0S/IBasicRelative permittivity epsilonrBasicRelative permeability mur1e3Basic6 On the model toolbar. click Add Material to close the Add Material windowMAGNETIC FIELDS (MF)Select Domains 1-8 and 10-14 only0MODELING OF A 3D INDUCTOR

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • matlab仿真RFID标签防碰撞算法 包括二进制和ALOHA
    RFID标签防碰撞算法研究 详细包括二进制和ALOHA 毕业设计专用
    2020-12-03下载
    积分:1
  • 12864实现菜单( 可以实现多级菜单,容易学习)
    12864 实现菜单在,单片机控制中作为人机交换中起了很大的作用,就像叫一个人用高科技的设备,但是复杂,但是做成菜单一样玩起来和手机没什么区别简单。很好用希望同志 笑纳咯根12864实现菜单( 可以实现多级菜单,容易学习)一模一样
    2020-12-11下载
    积分:1
  • 个完整的BPSK仿真MATLAB代码,发射机为卷积码,接收采用的是维特比译码
    一个完整的BPSK仿真MATLAB代码,发射机为卷积编码,接收采用的是维特比译码
    2020-12-10下载
    积分:1
  • FWM 耦合方 matlab代码
    FWM耦合方程matlab代码 3个耦合方程的数值解 其中包括泵浦波 信号波 闲频波
    2020-11-28下载
    积分:1
  • easygui-0.96
    EasyGUI是一个非常简单、非常容易用Python进行GUI编程的模块。EasyGUI不同于其他GUI生成器,因为EasyGUI不是事件驱动的。相反,所有GUI交互都是通过简单的函数调用的。EasyGui为与用户进行简单的GUI交互提供了一个易于使用的界面.它不要求程序员知道任何关于tkinter、框架、小部件、回调或lambda的信息。EasyGUI运行在Python 2和3上,并且没有任何依赖关系。
    2020-12-11下载
    积分:1
  • 室内定位卡尔曼滤波KNN
    转自:http://www.cnblogs.com/rubbninja/p/6220284.html 卡尔曼滤波 KNN定位matlab代码合集。具体请参考转载作者博客
    2020-12-11下载
    积分:1
  • 接口文档标准模板-含Word和excel两种
    接口文档标准的模板,包含Word和excel两种模板。满足各种语言接口需要。
    2019-10-16下载
    积分:1
  • SK-LPC1788开发板资料(附详细LPC1788例及原理图)
    SK-LPC1788开发板资料(附详细LPC1788例程、原理图、常用元器件Datasheet)
    2020-12-06下载
    积分:1
  • cadence16.5 pspice教全集
    cadence16.5 pspice教程全集,很详细的pspice教程,说的很详细,通俗易懂,推荐下载。cadenceCHANNEL PARTNER、 Cadence/ OrCAD拥有一批学识渊博的技术攴持人员,他们注重与工程师在工作上密切配合,尽可能提高其软件的生产效率。5、 PSpice16.5版本具有自动收敛的功能,自动调整仿真参数帮助电路收敛。6、支持多个 slPs block,实现 Matlab与 Pspice电路仿真的无缝结合7、 PSpice是当今占主导地位的,基于 SPICE的仿真器。三、 PSpice的工作流程图绘制原理图「选择分析方或修L设置仿真参数」元改件电运行仿真数结你果是香符合Y仿真结束四、 PSpice a/D基木的分析内容在选择分析方法前需要绘制电路原理图, OrcaD统一由 Capture窗口进行输入和调用 PSpice分析。在使用时绘制原理图应该注意的地方。新建时应选择调用的器件必须有模型首先,调用软件本身提供的模型库,这些库文件存储的路径为,此路径中的所有器件都有提供模型,可以直接调用。其次,若使用自己的器件,必须保证两个文件同时存在,而且器件属性中必须包含属性。原理图中至少必须有一条网络名称为,即接地。必须有激励源原理图中的端口符号并不具有电源特性,所有的激励源都存储在和库中上海市长宁区延安西路号华敏、翰尊时代广场层座邮箱cadenceCHANNEL PARTNER电源两端不允许短路,不允许仅由电源和电感组成回路,也不允许仅由电溟和电容组成的割集。解决方法:电容并联一个大电阻,电感串联一个小电阻6、好不要使用负值电阻、电容和电感,因为他们容易引起不收接下来具体介绍几种基本的分析方法和参数的设置。直流分析(直流分析指是使电路某个元器件参数作为自变量在一定范围内变化,对自变量的每个取值,计算电路的输出变量的自流偏特性。此过程中还可以指定一个参变量并确定取值范围,每设定一个参变量的值,均计算输出变量随自变量的变化特性。直流分析也是交流分析时确定小信号线性模型参数和瞬态分析确定初始值所需的分析。模拟计算后,可以利川功能绘出曲线,或任意输出变量相对任元件参数的传输特性曲线首先我们开启,打丌如图所示的界OrCAD CaptureFile Y1ew Tools Edit Lptions Windon Help〔 agenceSPARAMSCHEMATICI-bias量量量国量口口园国4D: FSPICE材料2011 EM\BANDPASS.IS图1-1 Capturer界面上海市长宁区延安西路号华敏、翰尊时代广场层座邮箱cadenceCHANNEL PARTNER接下来使用菜单:启动建立一个新的工程,如图所示PCtrltsSave AsHIL FileVerilog File图新建工程界面在图对话框中输入文件名,如“”。在下面的单选按钮中选择“”,要注意这是由直接调用的按钮,不要选错哦。那么其它的选项是仆么意思呢?数模混合仿真系统级原理图设计或设计原理图设计最后在“”中指点文件存放的文件夹后,单击,出现图界面。Rev ProiectCreate a New Project UsingHelHelp⊙ Analog or Mixed A/DTip for New Users○PAnalog orMixed A /D project. Thenew project may be b alm O Piog ammable Logic wizardor copied from an existing○ SchemLuLaliuriDBrOWS图1-3建立新电路图对话框Create pspice Prone基于已有的设计创建文件○ CReate baxIsting proerOKBuck ConverterBIOCancelCreate a上 ank project厂Hahn创建空白设计图1-4创建 PSpice文件对话框上海市长宁区延安西路号华敏、翰尊时代广场层座邮箱cadenceCHANNEL PARTNER在“ Create based upon an existing project”下可以看到许多已有的工程和电路图。我们选择“ Create a blank project”,进入到仿真电路图绘制窗凵,并开始绘制电路图。如图1-5所示。i OrCAD Capture L/=(SCHEIATICI: PAGE1)□-回回 File: Edit View Tools Place Macro0 PSpice Accessories ption3置idoy正elpcadences间器回博期②0回角6@101PGE1仿真工具栏图4罕LxF121:31:14:516::1:11101110图1-5仿真电路图输入窗口接下来,我们先要学会选择器件:选择绘图工具栏中的点击后图1-5窗口出现放置元件的窗凵如图1-6所示。注意选择的器件库必须存储在路径为卜,此路径中的所有器件都有提供模型,可以直接调用。活着如果是使用自己的器件,必须保证两个文件同时存在,而且器件属性中必须包含属性,即在图对话框中选中的器件需要有燃的标i(对丁新建器件,后续有专门教程讲解)上海市长宁区延安西路号华敏、翰尊时代广场层座邮箱cadenceCHANNEL PARTNERPlace partRPart lis上:QPND-4153/55C/DIODEUPND-41535/DIODEQPND-4153/27C/DIODEQSCH-55457-55C/DIODE05CH55125心D0DE添加元件库4527CDJoDEBTEST/TESR/ANALOG,--LibrariesxNAL口Desian CacheDIODEOPAMPSOURCEPackagingParts per PkgR?Part^∧Type: Homogeneous1k⊙Nrml+」 Search for fa图1-6放置元件的窗口如图1-6,我们选择输入“R”,找到在 analog.lib下的电阻器件,双击它就可以放置到绘图窗口屮了。接下来我们门作个简单例子来了解一下仿真的工程。当然这甲先进行的是自流扫描分析( DC Sweep)在图1-5的原理图绘制窗凵中输入如图1-7所示的电路。W图1-7原理电路图上图所用到的器件信息器件模型模型库电源VDC/ souce电阻R/ analog稳压管DI1N5225/ diode上海市长宁区延安西路号华敏、翰尊时代广场层座邮箱cadenceCHANNEL PARTNER地0注意一点:地的选择不是在 Place part,而是在 Place ground中选择名称为0的0电路图画好后存盘,然后就要开始设置仿真参数开始进行仿真了。首先,新建个仿真文件,启动 PSpice/ New simulation命令,或者自接点击仿真工具栏中按钮,得到图1-8所示对话框。在Name中输入仿真文件名,如:DC,点击“ Create”后,在原来工程文件夹中就会自动生成一个名为“DC”的文件夹,后面所作的仿真结果和工程均保存在该文件夹下,方便于管理。HeS量 uLationXNalCreateDccelInherit fromroFERoot Schematic SCHEMATIC1图1-8仿真参数设置对话框完成图1-8后,会弹出图1-9所示的仿真参数设置窗凵。我们先从 Analysis中开始看起互 ilLation setFiles0ptectorY⊙ voltageModel typ○Guba○ ModelMonte Carlo/ W orst Cs OIermParameter namePTP〕- Sweep type□L。 d bias PEndvalue: 10O Logar ta mIc DecadeincrementOvale Ist确定□取捎应用)匚帮图1-9仿真参数设置窗口在 Analysis type(分析类型)屮我们选取 DC Sweep上海市长宁区延安西路号华敏、翰尊时代广场层座邮箱cadenceCHANNEL PARTNER在 Option中,我们选取 Primary Sweep在 Sweep variable中可以看到如下几个选项Voltage Source电压源信息Current source电流源信息Global parameter全局参数Model parameter模型参数Temperature温度设置在 Sweep type中,我们可以设置为 Linear(线性); logarithmic(对数), valueline(设置点)。这里我们对电压源Ⅵ1进行设置,扫描值为-6V到10V,每次递增1V设置好后,点击确定。然后点击仿真工具栏屮的◎,运行仿真。接着就调出了 PSpice的界面,如图1-10所示。sCHELATICI-DC- PSpice ND [nC. dat (active)Iatis tait Yim amative Ia twt Trl. Iiam May cadence -oxSoHEMATIC1DC输出仿真结果区回基公回在这里,按照用户的要求可以产生各式各样的输出波形波形显示窗口或输出文件Poi"SCHEMATIC1DC[D pepooMFA仿高状态窗口,负资Reyong and cheekngeeutGreul reyn a checked no文字窗输出窗,负武显示显示本仿真执行内容本你真操作具的着的信惠2I1r010n户与执行后的信息图1-10 PSpice执行模拟窗口PSpice界面中最主要的工具栏含义如图1-11所示。对X轴坐标在对数或线性变‖对波形进行傅添加性能分析波化之间互相转换立叶变换形显示窗口QQ6amm回X查找波形上的点对Ⅴ轴坐标在对数或线计算全局性变化之间互相转换忝加波形显示出波函数值形让笪占图1-11 PSpice基木工具栏的含义选择菜单栏 Trace/ Add trace,或者点击图标,得到图1-12对话框,在这里我们可以看到有两个标签 Simulation output variables与 Functions and macros“ Simulation Output variables”中包含许多的变量,“ Functions and macros”上海市长宁区延安西路号华敏、翰尊时代广场层座邮箱cadenceCHANNEL PARTNERkdd TraceSimulation Output variable仿真输出变量Functions or macrosAnalog Operators and FunctioID11I[D1: A)回点F1:1[y1凶 voltages1:+[D1: Alv CurrerIVIDI: KIN0120输出变量的列表回 Pawer8数学运算ATANITN0127函数□NHalAVGAVGXO∨R12cs(〕v1:回 Alias namesD[〕Subcircuit NodesDB(〕41[D1ENMA风RENVMIN I11EXF〔/2D过滤显示V2(R节点M21GGG[D125 variables listedR110‖A10〔1F时输入欲观看节点的波形[OK[Cancel[ Help图1-12加入波形对话框中冇需要测量的信息函薮。在操作的过程中,比如要看最大的的值的吋候,先选择Max0函数,再选择变量的类型V1⑩D1)。我们就可以在 Trace Expression中看到表达式:MAX(Ⅵl(D1)。这是一个最为基本的步骤。若选择输出V2(D1),得到图1-13的波形。通过波形可以自己分析是否满足设计要求图1-12输出波形随输入信号的变化曲线交流分析(上海市长宁区延安西路号华敏、翰尊时代广场层座邮箱
    2020-12-04下载
    积分:1
  • LCL的三相三线制APF仿真
    基于重复控制器的LCL三相三线制有源电力滤波器,该仿真可实现动态滤除谐波,补偿无功功率,净化电网运行环境
    2020-12-05下载
    积分:1
  • 696518资源总数
  • 106245会员总数
  • 18今日下载