登录
首页 » matlab » mvcnn-master

mvcnn-master

于 2020-12-04 发布
0 97
下载积分: 1 下载次数: 1

代码说明:

说明:  计算机视觉中一个长期存在的问题是关于用于识别的三维形状的表示:三维形状是否应该使用操作在其原生三维格式(如体素网格或多边形网格)上的描述符来表示,还是可以使用基于视图的描述符来有效地表示?我们在学习从一组二维图像上呈现的视图中识别三维图形的背景下解决了这个问题。我们首先介绍了一个经过训练的标准CNN架构,可以独立地识别呈现在视图中的形状,并展示了一个3D形状甚至可以从中识别出来(A longstanding question in computer vision concerns the representation of 3D shapes for recognition: should 3D shapes be represented with descriptors operating on their native 3D formats)

文件列表:

mvcnn-master, 0 , 2019-01-04
mvcnn-master\.gitignore, 4 , 2019-01-04
mvcnn-master\.gitmodules, 222 , 2019-01-04
mvcnn-master\LICENCE, 1074 , 2019-01-04
mvcnn-master\README.md, 4408 , 2019-01-04
mvcnn-master\caffe, 0 , 2019-01-04
mvcnn-master\caffe\MVCNNDataLayer.py, 3708 , 2019-01-04
mvcnn-master\caffe\MVCNNDataLayerPreTrain.py, 3211 , 2019-01-04
mvcnn-master\caffe\README.md, 600 , 2019-01-04
mvcnn-master\caffe\alexNet.prototxt, 5384 , 2019-01-04
mvcnn-master\caffe\ilsvrc_2012_mean.npy, 1572944 , 2019-01-04
mvcnn-master\caffe\mvccn_12view.prototxt, 6102 , 2019-01-04
mvcnn-master\caffe\mvcnn_PreTrain.prototxt, 249 , 2019-01-04
mvcnn-master\caffe\mvcnn_Train.prototxt, 263 , 2019-01-04
mvcnn-master\caffe\trainAlex.py, 321 , 2019-01-04
mvcnn-master\caffe\trainCNN.py, 333 , 2019-01-04
mvcnn-master\caffe\trainMVCNN.py, 318 , 2019-01-04
mvcnn-master\cnn_shape.m, 7128 , 2019-01-04
mvcnn-master\cnn_shape_get_batch.m, 4605 , 2019-01-04
mvcnn-master\cnn_shape_get_features.m, 12834 , 2019-01-04
mvcnn-master\cnn_shape_init.m, 6412 , 2019-01-04
mvcnn-master\cnn_shape_train.m, 16907 , 2019-01-04
mvcnn-master\contributors.txt, 56 , 2019-01-04
mvcnn-master\data, 0 , 2019-01-04
mvcnn-master\data\.gitignore, 25 , 2019-01-04
mvcnn-master\dataset, 0 , 2019-01-04
mvcnn-master\dataset\setup_imdb_generic.m, 102 , 2019-01-04
mvcnn-master\dataset\setup_imdb_modelnet.m, 8592 , 2019-01-04
mvcnn-master\dataset\setup_imdb_shapenet.m, 3249 , 2019-01-04
mvcnn-master\dependencies, 0 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96, 0 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\.gitignore, 31 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\COPYRIGHT, 1486 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\Makefile, 993 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\Makefile.win, 900 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\README, 20224 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\blas, 0 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\blas\Makefile, 293 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\blas\blas.h, 702 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\blas\blasp.h, 16529 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\blas\daxpy.c, 1274 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\blas\ddot.c, 1280 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\blas\dnrm2.c, 1375 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\blas\dscal.c, 1104 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\heart_scale, 27670 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\linear.cpp, 57430 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\linear.def, 426 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\linear.h, 2211 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab, 0 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab\Makefile, 1504 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab\README, 7470 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab\libsvmread.c, 4063 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab\libsvmwrite.c, 2341 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab\linear_model_matlab.c, 3545 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab\linear_model_matlab.h, 166 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab\make.m, 1139 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab\predict.c, 8517 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab\train.c, 10861 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\predict.c, 5338 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\python, 0 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\python\Makefile, 32 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\python\README, 12195 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\python\liblinear.py, 9373 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\python\liblinearutil.py, 8208 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\train.c, 9109 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\tron.cpp, 5186 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\tron.h, 687 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\windows, 0 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\windows\liblinear.dll, 182272 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\windows\libsvmread.mexw64, 11264 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\windows\libsvmwrite.mexw64, 10240 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\windows\predict.exe, 128512 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\windows\predict.mexw64, 16896 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\windows\train.exe, 179200 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\windows\train.mexw64, 61440 , 2019-01-04
mvcnn-master\dependencies\matconvnet, 0 , 2019-01-04
mvcnn-master\dependencies\vlfeat, 0 , 2019-01-04
mvcnn-master\evalkit, 0 , 2019-01-04
mvcnn-master\evalkit\Evaluator.js, 5553 , 2019-01-04
mvcnn-master\evalkit\Metrics.js, 4769 , 2019-01-04
mvcnn-master\evalkit\README.txt, 1148 , 2019-01-04
mvcnn-master\evalkit\evaluate.js, 150 , 2019-01-04
mvcnn-master\evalkit\train.csv, 894149 , 2019-01-04
mvcnn-master\evalkit\val.csv, 128999 , 2019-01-04
mvcnn-master\exp_scripts, 0 , 2019-01-04
mvcnn-master\exp_scripts\confmat.m, 321 , 2019-01-04
mvcnn-master\exp_scripts\display_retrieval_results.m, 3539 , 2019-01-04
mvcnn-master\exp_scripts\display_right_wrong.m, 3109 , 2019-01-04
mvcnn-master\exp_scripts\learn_metric.m, 1634 , 2019-01-04
mvcnn-master\exp_scripts\prfigure.m, 1756 , 2019-01-04
mvcnn-master\exp_scripts\visualize_saliency.m, 2931 , 2019-01-04
mvcnn-master\get_imdb.m, 840 , 2019-01-04
mvcnn-master\rerank_retrieval.m, 1330 , 2019-01-04
mvcnn-master\run_experiments.m, 2384 , 2019-01-04
mvcnn-master\run_retrieval.m, 2471 , 2019-01-04
mvcnn-master\setup.m, 2522 , 2019-01-04
mvcnn-master\shape_compute_descriptor.m, 5257 , 2019-01-04
mvcnn-master\utils, 0 , 2019-01-04
mvcnn-master\utils\RenderMe, 0 , 2019-01-04
mvcnn-master\utils\RenderMe\RenderDepth, 0 , 2019-01-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 2
    说明:  LS—-dyna碎片撞击模拟,粗糙简单易懂(Ls-dyna fragment impact)
    2020-07-09 15:28:55下载
    积分:1
  • 2002-2017地级市资本存量数据集
    说明:  此压缩文件包含2002年-2017年200多个地级市资本存量的数据,里面有详细的计算过程与说明。(This document contains the capital stock data of more than 200 cities in 2002-2017, including detailed calculation process and description, which is convenient for scholars to understand and master)
    2021-01-08 09:28:52下载
    积分:1
  • Core_Board_V1.0_array_GERBER (1)
    飞思卡尔最新批量5746R设计非常有用,建议下载(Freescale Carle latest batch 5746R design)
    2017-08-30 14:13:10下载
    积分:1
  • LS方法捕捉气液相界面
    利用LS方法捕捉气液相界面,界面处的阶跃以及相变的处理方式(LS method is used to capture the interface between gas and liquid, the step at the interface and the way of phase transformation.)
    2021-01-21 01:18:46下载
    积分:1
  • AGC代码
    说明:  自己写的自动增益控制器MATLAB代码,比较简单易懂,适合初学(Matlab code of automatic gain controller written by myself is easy to understand and suitable for beginners)
    2020-05-30 22:59:22下载
    积分:1
  • Tutorials
    在FLUENT中实现湍流模型的具体方法,文档和源程序。(The specific method, document and source program of turbulence model are realized in FLUENT.)
    2020-12-23 15:49:06下载
    积分:1
  • LCD12864(带字库)测试程序,控制器st7920
    LCD12864(带字库)测试程序,控制器st7920-LCD12864 (with character) test procedure, the controller st7920
    2022-02-28 12:36:48下载
    积分:1
  • prjconverter
    把vc++7工程转换为vc++6的小工具。用法:prjconverter c: mpetterxmletterxml.sln(VC++7 to VC++6 project converter)
    2010-09-18 07:09:06下载
    积分:1
  • 用于潮流计算的程序请让我下载我需要的吧感谢了啊
    用于潮流计算的程序请让我下载我需要的吧感谢了啊-Procedures for the flow calculation, please let me download I need to thank you, ah
    2023-07-18 08:25:05下载
    积分:1
  • ESD_for_mobile
    手机的防静电设计,普通芯片的内部防静电只有2000V,如果得到更高的防静电效果,8000V,15000V等。(Cell phone anti-static design, the general chip' s internal anti-static only 2000V, if the effect of higher anti-static, 8000V, 15000V, etc..)
    2009-01-31 19:04:52下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载