Finite-Dimensional Vector Spaces - P. Halmos (Springer, 1987)
在学习代数学之余,值得一看的代数学书籍。里面介绍了更为丰富的代数学概念和结论。PREFACEMy purpose in this book is to treat linear transformations on finite-dimensional vector spaces by the methods of more general theories. Theidea is to emphasize the simple geometric notions common to many partsof mathematics and its applications, and to do so in a language that givesaway the trade secrets and tells the student what is in the back of the mindsof people proving theorems about integral equations and Hilbert spaces.The reader does not, however, have to share my prejudiced motivationExcept for an occasional reference to undergraduate mathematics the bookis self-contained and may be read by anyone who is trying to get a feelingfor the linear problems usually discussed in courses on matrix theory orhigher"algebra. The algebraic, coordinate-free methods do not lose powerand elegance by specialization to a finite number of dimensions, and theyare, in my belief, as elementary as the classical coordinatized treatmentI originally intended this book to contain a theorem if and only if aninfinite-dimensional generalization of it already exists, The temptingeasiness of some essentially finite-dimensional notions and results washowever, irresistible, and in the final result my initial intentions are justbarely visible. They are most clearly seen in the emphasis, throughout, ongeneralizable methods instead of sharpest possible results. The reader maysometimes see some obvious way of shortening the proofs i give In suchcases the chances are that the infinite-dimensional analogue of the shorterproof is either much longer or else non-existent.A preliminary edition of the book (Annals of Mathematics Studies,Number 7, first published by the Princeton University Press in 1942)hasbeen circulating for several years. In addition to some minor changes instyle and in order, the difference between the preceding version and thisone is that the latter contains the following new material:(1) a brief dis-cussion of fields, and, in the treatment of vector spaces with inner productsspecial attention to the real case.(2)a definition of determinants ininvariant terms, via the theory of multilinear forms. 3 ExercisesThe exercises(well over three hundred of them) constitute the mostsignificant addition; I hope that they will be found useful by both studentPREFACEand teacher. There are two things about them the reader should knowFirst, if an exercise is neither imperative "prove that.., )nor interrogtive("is it true that...?" )but merely declarative, then it is intendedas a challenge. For such exercises the reader is asked to discover if theassertion is true or false, prove it if true and construct a counterexample iffalse, and, most important of all, discuss such alterations of hypothesis andconclusion as will make the true ones false and the false ones true. Secondthe exercises, whatever their grammatical form, are not always placed 8oas to make their very position a hint to their solution. Frequently exer-cises are stated as soon as the statement makes sense, quite a bit beforemachinery for a quick solution has been developed. A reader who tries(even unsuccessfully) to solve such a"misplaced"exercise is likely to ap-preciate and to understand the subsequent developments much better forhis attempt. Having in mind possible future editions of the book, I askthe reader to let me know about errors in the exercises, and to suggest im-provements and additions. (Needless to say, the same goes for the text.)None of the theorems and only very few of the exercises are my discovery;most of them are known to most working mathematicians, and have beenknown for a long time. Although i do not give a detailed list of my sources,I am nevertheless deeply aware of my indebtedness to the books and papersfrom which I learned and to the friends and strangers who, before andafter the publication of the first version, gave me much valuable encourage-ment and criticism. Iam particularly grateful to three men: J. L. Dooband arlen Brown, who read the entire manuscript of the first and thesecond version, respectively, and made many useful suggestions, andJohn von Neumann, who was one of the originators of the modern spiritand methods that I have tried to present and whose teaching was theinspiration for this bookP、R.HCONTENTS的 FAPTERPAGRI SPACESI. Fields, 1; 2. Vector spaces, 3; 3. Examples, 4;4. Comments, 55. Linear dependence, 7; 6. Linear combinations. 9: 7. Bases, 108. Dimension, 13; 9. Isomorphism, 14; 10. Subspaces, 16; 11. Calculus of subspaces, 17; 12. Dimension of a subspace, 18; 13. Dualspaces, 20; 14. Brackets, 21; 15. Dual bases, 23; 16. Reflexivity, 24;17. Annihilators, 26; 18. Direct sums, 28: 19. Dimension of a directsum, 30; 20. Dual of a direct sum, 31; 21. Qguotient spaces, 33;22. Dimension of a quotient space, 34; 23. Bilinear forms, 3524. Tensor products, 38; 25. Product bases, 40 26. Permutations41; 27. Cycles,44; 28. Parity, 46; 29. Multilinear forms, 4830. Alternating formB, 50; 31. Alternating forms of maximal degree,52II. TRANSFORMATIONS32. Linear transformations, 55; 33. Transformations as vectors, 5634. Products, 58; 35. Polynomials, 59 36. Inverses, 61; 37. Mat-rices, 64; 38. Matrices of transformations, 67; 39. Invariance,7l;40. Reducibility, 72 41. Projections, 73 42. Combinations of pro-jections, 74; 43. Projections and invariance, 76; 44. Adjoints, 78;45. Adjoints of projections, 80; 46. Change of basis, 82 47. Similarity, 84; 48. Quotient transformations, 87; 49. Range and null-space, 88; 50. Rank and nullity, 90; 51. Transformations of rankone, 92 52. Tensor products of transformations, 95; 53. Determinants, 98 54. Proper values, 102; 55. Multiplicity, 104; 56. Triangular form, 106; 57. Nilpotence, 109; 58. Jordan form. 112III ORTHOGONALITY11859. Inner products, 118; 60. Complex inner products, 120; 61. Innerproduct spaces, 121; 62 Orthogonality, 122; 63. Completeness, 124;64. Schwarz e inequality, 125; 65. Complete orthonormal sets, 127;CONTENTS66. Projection theorem, 129; 67. Linear functionals, 130; 68. P aren, gBCHAPTERtheses versus brackets, 13169. Natural isomorphisms, 138;70. Self-adjoint transformations, 135: 71. Polarization, 13872. Positive transformations, 139; 73. Isometries, 142; 74. Changeof orthonormal basis, 144; 75. Perpendicular projections, 14676. Combinations of perpendicular projections, 148; 77. Com-plexification, 150; 78. Characterization of spectra, 158; 79. Spec-ptral theorem, 155; 80. normal transformations, 159; 81. Orthogonaltransformations, 162; 82. Functions of transformations, 16583. Polar decomposition, 169; 84. Commutativity, 171; 85. Self-adjoint transformations of rank one, 172IV. ANALYSIS....17586. Convergence of vectors, 175; 87. Norm, 176; 88. Expressions forthe norm, 178; 89. bounds of a self-adjoint transformation, 17990. Minimax principle, 181; 91. Convergence of linear transformations, 182 92. Ergodic theorem, 184 98. Power series, 186APPENDIX. HILBERT SPACERECOMMENDED READING, 195INDEX OF TERMS, 197INDEX OF SYMBOLS, 200CHAPTER ISPACES§L. FieldsIn what follows we shall have occasion to use various classes of numbers(such as the class of all real numbers or the class of all complex numbers)Because we should not at this early stage commit ourselves to any specificclass, we shall adopt the dodge of referring to numbers as scalars. Thereader will not lose anything essential if he consistently interprets scalarsas real numbers or as complex numbers in the examples that we shallstudy both classes will occur. To be specific(and also in order to operateat the proper level of generality) we proceed to list all the general factsabout scalars that we shall need to assume(A)To every pair, a and B, of scalars there corresponds a scalar a+called the sum of a and B, in such a way that(1) addition is commutative,a+β=β+a,(2)addition is associative, a+(8+y)=(a+B)+y(3 there exists a unique scalar o(called zero)such that a+0= a forevery scalar a, and(4)to every scalar a there corresponds a unique scalar -a such that十(0(B)To every pair, a and B, of scalars there corresponds a scalar aBcalled the product of a and B, in such a way that(1)multiplication is commutative, aB pa(2)multiplication is associative, a(Br)=(aB)Y,( )there exists a unique non-zero scalar 1 (called one)such that al afor every scalar a, and(4)to every non-zero scalar a there corresponds a unique scalar a-1or-such that aaSPACES(C)Multiplication is distributive with respect to addition, a(a+n)If addition and multiplication are defined within some set of objectsscalars) so that the conditions(A),B), and (c)are satisfied, then thatset(together with the given operations) is called a field. Thus, for examplethe set Q of all rational numbers(with the ordinary definitions of sumand product)is a field, and the same is true of the set of all real numberaand the set e of all complex numbersHHXERCISIS1. Almost all the laws of elementary arithmetic are consequences of the axiomsdefining a field. Prove, in particular, that if 5 is field and if a, and y belongto 5. then the following relations hold80+a=ab )Ifa+B=a+r, then p=yca+(B-a)=B (Here B-a=B+(a)(d)a0=0 c=0.(For clarity or emphasis we sometimes use the dot to indi-cate multiplication.()(-a)(-p)(g).If aB=0, then either a=0 or B=0(or both).2.(a)Is the set of all positive integers a field? (In familiar systems, such as theintegers, we shall almost always use the ordinary operations of addition and multi-lication. On the rare occasions when we depart from this convention, we shallgive ample warningAs for "positive, "by that word we mean, here and elsewherein this book, "greater than or equal to zero If 0 is to be excluded, we shall say"strictly positive(b)What about the set of all integers?(c) Can the answers to these questiong be changed by re-defining addition ormultiplication (or both)?3. Let m be an integer, m2 2, and let Zm be the set of all positive integers lessthan m, zm=10, 1, .. m-1). If a and B are in Zmy let a +p be the leastpositive remainder obtained by dividing the(ordinary) sum of a and B by m, andproduct of a and B by m.(Example: if m= 12, then 3+11=2 and 3. 11=9)a) Prove that i is a field if and only if m is a prime.(b What is -1 in Z5?(c) What is囊izr?4. The example of Z, (where p is a prime)shows that not quite all the laws ofelementary arithmetic hold in fields; in Z2, for instance, 1 +1 =0. Prove thatif is a field, then either the result of repeatedly adding 1 to itself is always dif-ferent from 0, or else the first time that it is equal to0 occurs when the numberof summands is a prime. (The characteristic of the field s is defined to be 0 in thefirst case and the crucial prime in the second)SEC. 2VECTOR SPACES35. Let Q(v2)be the set of all real numbers of the form a+Bv2, wherea and B are rational.(a)Ie(√2) a field?(b )What if a and B are required to be integer?6.(a)Does the set of all polynomials with integer coefficients form a feld?(b)What if the coeficients are allowed to be real numbers?7: Let g be the set of all(ordered) pairs(a, b)of real numbers(a) If addition and multiplication are defined by(a月)+(,6)=(a+y,B+6)and(a,B)(Y,8)=(ary,B6),does s become a field?(b )If addition and multiplication are defined by(α,月)+⑦,b)=(a+%,B+6)daB)(,b)=(ay-6a6+的y),is g a field then?(c)What happens (in both the preceding cases)if we consider ordered pairs ofcomplex numbers instead?§2. Vector spaceWe come now to the basic concept of this book. For the definitionthat follows we assume that we are given a particular field s; the scalarsto be used are to be elements of gDEFINITION. A vector space is a set o of elements called vectors satisfyingthe following axiomsQ (A)To every pair, a and g, of vectors in u there corresponds vectora t y, called the aum of a and y, in such a way that(1)& ddition is commutative,x十y=y十a(2)addition is associative, t+(y+2)=(+y)+a(3)there exists in V a unique vector 0(called the origin) such thata t0=s for every vector and(4)to every vector r in U there corresponds a unique vector -rthat c+(-x)=o(B)To every pair, a and E, where a is a scalar and a is a vector in u,there corresponds a vector at in 0, called the product of a and a, in sucha way that(1)multiplication by scalars is associative, a(Bx)=aB)=, and(2 lz a s for every vector xSPACESSFC B(C)(1)Multiplication by scalars is distributive with respect to vectorddition, a(+y=a+ ag, and2)multiplication by vectors is distributive with respect to scalar ad-dition, (a B )r s ac+ Bc.These axioms are not claimed to be logically independent; they aremerely a convenient characterization of the objects we wish to study. Therelation between a vector space V and the underlying field s is usuallydescribed by saying that v is a vector space over 5. If S is the field Rof real number, u is called a real vector space; similarly if s is Q or if gise, we speak of rational vector spaces or complex vector space§3. ExamplesBefore discussing the implications of the axioms, we give some examplesWe shall refer to these examples over and over again, and we shall use thenotation established here throughout the rest of our work.(1) Let e(= e)be the set of all complex numbers; if we interpretr+y and az as ordinary complex numerical addition and multiplicatione becomes a complex vector space2)Let o be the set of all polynomials, with complex coeficients, in avariable t. To make into a complex vector space, we interpret vectoraddition and scalar multiplication as the ordinary addition of two poly-nomials and the multiplication of a polynomial by a complex numberthe origin in o is the polynomial identically zeroExample(1)is too simple and example (2)is too complicated to betypical of the main contents of this book. We give now another exampleof complex vector spaces which(as we shall see later)is general enough forall our purposes.3)Let en,n= 1, 2,. be the set of all n-tuples of complex numbers.Ix=(1,…,轨)andy=(m1,…,n) are elements of e, we write,,bdefinitionz+y=〔1+叽,…十物m)0=(0,…,0),-inIt is easy to verify that all parts of our axioms(a),(B), and (C),52, aresatisfied, so that en is a complex vector space; it will be called n-dimenaionalcomplex coordinate space
- 2020-12-05下载
- 积分:1
牛客网校招面试题库(附答案与解析)测试篇
牛客网校招面试题库(附答案与解析)测试篇,内容很不错ξ NOWCODER. COM牛客网一一互联网学习求职必备神器名企校招历年笔试面试真题,尽在牛客网可能就问的项日多一些,或者你说哪里精通可能面试官就多去问你这些。而且此图是根据题库数据整理出来,并不是根据实际单场面试整理,比如基础部分不会考那么多,会从中抽着考但是面试中必考的点且占比非常大的有测试,语言基础和算法决定你是否能拿 sp offer(高薪ofer)以及是否进名企的是项目和算法。可以看出,算法除了是面试必过门槛以外,更是决定你是否能进名企或高新 offer的决定性因素。另外关于算法部分,想要系统的学习算法思想,实现高频血试题最优解等详纽讲解的话可以报名算法名企校招刺班或算法高薪校招冲刺班,你将能学到更先进的算法思想以及又一套系统的校招高频题目的解题套路和方法论多出米的服务如下算法名企校招冲刺班√体系化直播教学v全程学习委员跟班√金牌助教一对一答疑√班级群讨论《程序员代码面试指程序员代码客生鼻法与数据减南》作者亲自讲解前亚马逊,IBM,百度, Growing技术大牛,十年尊法刷题经验前100名报名可免费赠送签名书牛客网,数百万大学生都在使用的免费在线学习平台ξ NOWCODER. COM牛客网一一互联网学习求职必备神器名企校招历年笔试面试真题,尽在牛客网如果有什么问题,也可以加qq咨询1440073724,如果是早鸟的话,还可以领取优惠码哦二、面试技巧血试一般分为技术面和hr面,形式的话很少有群面,少部分企业可能会有一个交叉面,不过总的来说,技术面基本就是考察你的专业技术水平的,h面的话主要是看这个人的综合素质以及家庭情况符不符合公司要求,一般来讲,技术的话只要通过了技术面h面基木上是没有问题(也有少数企业hr面会刷很多人)那我们主要来说技术面,技术面的话主要是考察专业技术知识和水平,我们是可以有一定的技巧的,但是一定是基于有一定的能力水平的所以也慎重的告诉大家,技巧不是投机取巧,是起到辅助效果的,技术面最主要的还是要有实力,这里是基于实力水平之上的技巧。这里告诉大家面试中的几个技巧:1、简历上做一个引导在词汇上做好区分,比如熟悉Java,了解 python,精通c语言这样的话对自己的掌握程度有个区分,也好让面试官有个着重去问, python本来写的也只是了解,自然就不会多问你深入的些东西了。2、在面试过程中做一个引导:面试过稈中尽量引导到自己熟知的一个领域,比如问到你说一下DNS寻址,然后你简单回答(甚至这步也可以省咯)之后,可以说句,自己对这块可能不是特别熟悉,对计算机网终中的运输层比较熟悉,如果有只体的,甚至可以冉加一句,比如TCP和UDP这样的话你可以把整个面试过程往你熟知的地方引导,也能更倾向」体现出你的优势而不是劣势,但是此方法仅限于掌握合适的度,比如有的知识点是必会的而你想往别处引就有点说不过去了,比如让你说几个Java的关键字,你一个也说不上米,那可能就真的没辙了。3、在自我介绍中做一个引导般面试的开头都会有个自我介绍,在这个位置你也可以尽情的为自己的优势方面去引导4、面试过程中展示出自信面试过程中的态度也要掌握好,不要自卑,也不要傲娇,自信的回答出每个问题,尤其遇到不会的问题,要么做一些引导,实在不能引导也可以先打打擦边球,和面试官交流一下问题看起来像是没听懂题意,这个过程也可以再自己思考下,如果觉得这个过程可以免了的话也直接表明一下这ˆ地方不太熟悉或者还没有掌握好,千万不要强行回答。牛客网,数百万大学生都在使用的免费在线学习平台ξ NOWCODER. COM牛客网一一互联网学习求职必备神器名企校招历年笔试面试真题,尽在牛客网面试前的准备最重要的肯定是系统的学习了,有一个知识的框架,基础知识的牢靠程度等其中算法尤其重要,越来越多公司还会让你现场或者视频面试中手写代码;另一大重要的和加分项就是项目,在面试前,一定要练习回答自己项目的三个问题:这是个怎样的项目用到了什么技术,为什么用这项技术(以及每项技术很细的点以及扩展)●过程中遇到了什么问题,怎么解决的。那么话说回来,这个的前提是你要有一个好的项目,牛客网CEO叶向宇有带大家做项目,感兴趣的可以去了解一下竞争力超过70%求职者的项目:https://www.nowcoder.com/courses/semester/medium(专属优惠码: DJPgy3x,每期限量前100个)竞争力超过80%求职者的项目:hts:/www.nowcoder.com/courses/semester/Isenior(专属优惠码: DMVSex,每期限量前100个)知识都掌握好后,剩下的就是一个心态和模拟练习啦,因为你面试的少的话现场难免紧张,而且没在那个环境下可能永远不知道自己回答的怎么样因为哪怕当你都会了的情况下,你的衣达和心态就显得更重要了,会了但是没有表达的很清晰就很吃亏了,牛客网这边有A模拟面试,完全模拟了真实面试环境,正好人家可以真正的去练习一下,还能收获一份面试报告:https://www.nowcoder.com/interview/ai/indexJ下科机过闻所可写正性Static Nested Cass和 Inner Clss的不同保说说S园阳式日和1出小面试后需要做的:面试完了的话就不用太在意结果了,有限的吋间就应该做事半功倍的事情,当然,要保持电话邮箱畅通,不然别给你发ofer你都不知道。抛开这些,我们需要做的是及时将面试中的问题记录下来,尤其是自己回答的不够好的问题,一定要花时间去研究,并解决这些问题,下次面试再遇到相同的问题就能很好的解决,当然即使不遇到,你这个习惯坚持住,后面也可以作为个经历去跟面试官说,能表现出你对技术的喜爱和钻研的一个态度,同时,每次面试后你会发现自己的不足,查缺补漏的好机会,及时调整,在不新的调整和査缺补漏的过程中,你会越米越好。牛客网,数百万大学生都在使用的免费在线学习平台ξ NOWCODER. COM牛客网一一互联网学习求职必备神器名企校招历年笔试面试真题,尽在牛客网、面试考点导图功件测稳定性测试软件测试基础知识设计议数软件则试实例考察hell数数据结构与算法符串堆与的数据存储方式结构型式外双楼式日台模式校招面试考点之测试篇亨元横式牛客网出品「方法禊式臼建犁τ建造模说横式會笫橙栏万沃国可行为型式十责任链楼式场量题关于分层网际议网络三°网际空制灵文法议CMp应用三训算机基础探作系统弃砖界理机是度与死锁牛客网,数百万大学生都在使用的免费在线学习平台ξ NOWCODER. COM牛客网一一互联网学习求职必备神器名企校招历年笔试面试真题,尽在牛客网四、一对一答疑讲解戳这里如果你对校招求职或者职业发展很困惑,欢迎与作客网专业老师沟通,老师会帮你一对一计解答疑哦(可以扫下方二维码或者添加微信号: niukewang985)专业老师,在线答疑互联网校招求职全解惑互联网校招求职如何准备,如何规划测试自己校招中求职竞争力,适合公司.扫码或添加老师微信: niukewang985牛客网,数百万大学生都在使用的免费在线学习平台ξ NOWCODER. COM牛客网一一互联网学习求职必备神器名企校招历年笔试面试真题,尽在牛客网目录、软件测试基砧知识测试实例考察语言基咄1、Java2、C++3、 python4、she四、数据结构与算法2链数表组3、复杂度4序6排树递7、字符串堆与栈9、动态规划10、髙级算法11、查找23哈图希五、框架六、 Linux,SQL等七、前端八、开发工具九、设计模式十、场景题十一、大数据1、 Hadoop十二、计算机基础1、计算机网络2、数据库、操作系统十三、智力题十四、职业规划十五、技术发展十六、hr面更多名企历年笔试真题可点击直接进行练习:https://www.nowcoder.com/contestroom牛客网,数百万大学生都在使用的免费在线学习平台ξ NOWCODER. COM牛客网一一互联网学习求职必备神器名企校招历年笔试面试真题,尽在牛客网软件测试基础知识1、请你分别介绍一下单元测试、集成测试、系统测试、验收测试、回归测试考点:测试参考回答:单元测试:完成最小的软件设计单元(模块)的验证工作,日标是确保模垬被正确的编码,使用过程设计描述作为指南,对重要的控制跻径诖行测试以发现模玦内的错误,通常情况下是白盒的,对代码风格和规则、程序设计和结构、业务逻辑等进行静态测试,及早的发现和解决不易显现的错误。2、集成测试:通过测试发现与模块接口有关的问题。目标是把通过了单元测试的模块拿来,闷造一个在设计屮所描述的稈序结构,应当避免一次性的集成(除非软件规模很小),而采用增量集成自顶向下集成:模块集成的顺序是首先集成主模块,然后按照控制层次结构冋向下进行集成,隶属于主模块的模块按照深度优先或广度优先的方式集成到整个结构中去。自底向上集成:从原子模开始来进行构造和测试,因为模块是自底冋上集成的,进行时要求所有隶属于某个给顶层次的模块总是存在的,也不再有使用稳定测试桩的必要。3、系统测试:是基于系统整体需求说明书的黑盒类测试,应覆盖系统所有联合的部件。系统测试是针对整个产品系统走行的测试,日的是验证系统是否满足了需求规柊的定义,找出与需求规格不相符合或与之矛盾的地方。系统测试的对象不仅仅包括需要测试的产品系统的软件,还要包含软件所依赖的硬件、外设甚至包括某些数据、某些支持软件及其接口等。因此,必须将系统中的软件与各种依赖的资源结合起来,在系统实际运行环境下来进行测试、回归测试:回归测试是指在发生修改之后重新测试先前的测试用例以保证修改的正确性。理论上,软件产生新版本,都需要进行回归测试,验证以前发现和修复的错误是否在新软件版本上再次出现。根据修复好了的缺陷再重新让行测试。回归测试的日的在于验证以前出现过但已经修复好的缺陷不再重新出现。一般指对某已知修正的缺陷再次围绕它原来出现时的步骤重新测试5、验收测试:验收测试是指系统廾发生命周期方法论的一个阶段,这时相关的用户或独立测试人员根据测试计划和结果对系统进行测试和接收。它让系统用户决定是否接收系统。它是项确定产品是否能够满足合同或用户所规定需求的测试。验收测试包括 alpha测试和Bcta测试Alpha测试:是由用户在开发者的场所来进行的,在一个受控的环境中进行。Beta测试:由软件的最终用户在一个或多个用户场所来进行的,开发者通常不在现场,用户记录测试中遇到的问题并报告给开发者,开发者对系统进行最后的修改,并开始准备发布最终的软件。牛客网,数百万大学生都在使用的免费在线学习平台ξ NOWCODER. COM牛客网一一互联网学习求职必备神器名企校招历年笔试面试真题,尽在牛客网2、请你回答一下单元测试、集成测试、系统测试、验收测试、回归测试这几步中最重要的是哪一步考点:测试参考回答这些测试步骤分别在软件开发的不同阶段对软件进行测试,我认为对软件完整功能进行测试的系统测试很重要,因为此时单元测试和集成测试已完成,能够对软件所有功能进行功能测试,能够覆盖系统所冇联合的部件,是针对整个产品系统进行的测试,能够验证系统是否满足了需求规格的定义,因此我认为系统测试很重要。3、请回答集成测试和系统测试的区别,以及它们的应用场景主要是什么?考点:测试参考回答:区别:、计划和用例编制的先后顺序:从V模型来讲,在需求阶段就要制定系统测试计划和用例,HLD的时候倣集成测试计划和用例,有些公司的具体实践不一样,但是顺序肯定是先做系统测试计划用例,再做集成。2、用例的粒度:系统测试用例相对很接近用户接受测试用例,集成测试用例比系统测试用例更详细,而且对于接口部分要重点写,毕竟要集成各个模块或者子系统。3、执行测试的顺序:先执行集成测试,待集成测试出的问题修复之后,再做系统测试应用场景:集成测试:完成单元测试后,各模块联调测试:集屮在各模块的接口是否一致、各模块间的数据流和控制流是否按照设计实现其功能、以及结果的正确性验证等等;可以是整个产品的集成测试,也可以是大模块的集成测试;集成测试主要是针对程序内部结构进行测试,特别是对程序之间的接口进行测试。集成测试对测试人员的编与脚本能力要求比较高。测试方法一般迒用黑盒测试和白盒测试相结合。系统测试:针对整个产品的全面测试,既包含各模块的验证性测试(验证前两个阶段测试的正确性)和功能性(产品提交个用户的功能)测试,又包括对整个产品的健壮性、安全性、可维护性及各种性能参薮的测试。系统测试测试软件《需求规格说明书》中提到的功能是否有遗漏是否正确的实现。做系统测试要严格按照《需求规格说明书》,以它为标准。测试方法一般都使用黑盒测试法。4、请问测试开发需要哪些知识?需要具备什么能力?考点:测试牛客网,数百万大学生都在使用的免费在线学习平台
- 2020-06-02下载
- 积分:1