登录
首页 » Others » SVD(奇异值分解)算法

SVD(奇异值分解)算法

于 2020-12-05 发布
0 208
下载积分: 1 下载次数: 5

代码说明:

SVD(奇异值分解)算法及其评估,SVD应用,最小二乘配置的SVD分解解法

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • 射频微电子学 非常经典的书籍
    经典书籍:Razavi射频微电子学(中文版)经典书籍:Razavi射频微电子学(中文版)
    2020-12-03下载
    积分:1
  • Lectures on Stochastic Programming-Model
    这是一本关于随机规划比较全面的书!比较难,不太容易啃,但是读了之后收获很大。这是高清版的!To Julia, Benjamin, Daniel, Nalan, and Yael;to Tsonka Konstatin and Marekand to the memory of feliks, Maria, and dentcho2009/8/20pagContentsList of notationserace1 Stochastic Programming ModelsIntroduction1.2 Invento1.2.1The news vendor problem1.2.2Constraints12.3Multistage modelsMultiproduct assembl1.3.1Two-Stage Model1.3.2Chance Constrained ModeMultistage modelPortfolio selection131.4.1Static model14.2Multistage Portfolio selection14.3Decision rule211.5 Supply Chain Network Design22Exercises2 Two-Stage Problems272.1 Linear Two-Stage Problems2.1.1Basic pi272.1.2The Expected Recourse Cost for Discrete Distributions 302.1.3The Expected Recourse Cost for General Distributions.. 322.1.4Optimality Conditions垂Polyhedral Two-Stage Problems422.2.1General Properties422.2.2Expected recourse CostOptimality conditions2.3 General Two-Stage Problems82.3.1Problem Formulation, Interchangeability482.3.2Convex Two-Stage Problems2.4 Nonanticipativity2009/8/20page villContents2.4.1Scenario formulation2.4.2Dualization of Nonanticipativity Constraints2.4.3Nonanticipativity duality for general Distributions2.4.4Value of perfect infExercises3 Multistage problems3. 1 Problem Formulation633.1.1The general setting3.1The Linear case653.1.3Scenario trees3.1.4Algebraic Formulation of nonanticipativity constraints 7lDuality....763.2.1Convex multistage problems·763.2.2Optimality Conditions3.2.3Dualization of Feasibility Constraints3.2.4Dualization of nonanticipativity ConstraintsExercises4 Optimization models with Probabilistic Constraints874.1 Introduction874.2 Convexity in Probabilistic Optimization4.2Generalized Concavity of Functions and measures4.2.2Convexity of probabilistically constrained sets1064.2.3Connectedness of Probabilistically Constrained Sets... 113Separable probabilistic Constraints.1144.3Continuity and Differentiability Properties ofDistribution functions4.3.2p-Efficient Points.1154.3.3Optimality Conditions and Duality Theory1224 Optimization Problems with Nonseparable Probabilistic Constraints.. 1324.4Differentiability of Probability Functions and OptimalityConditions13344.2Approximations of Nonseparable ProbabilisticConstraints134.5 Semi-infinite Probabilistic Problems144E1505 Statistical Inference155Statistical Properties of Sample Average Approximation Estimators.. 1555.1.1Consistency of SAA estimators1575.1.2Asymptotics of the saa Optimal value1635.1.3Second order asStochastic Programs5.2 Stoch1745.2.1Consistency of solutions of the SAA GeneralizedEquatio1752009/8/20pContents5.2.2Atotics of saa generalized equations estimators 1775.3 Monte Carlo Sampling Methods180Exponential Rates of Convergence and Sample sizeEstimates in the Case of a finite Feasible se1815.3.2Sample size estimates in the General Case1855.3.3Finite Exponential Convergence1915.4 Quasi-Monte Carlo Methods1935.Variance-Reduction Techniques198Latin hmpling1985.5.2Linear Control random variables method200ng and likelihood ratio methods 205.6 Validation analysis5.6.1Estimation of the optimality g2025.6.2Statistical Testing of Optimality Conditions2075.7Constrained Probler5.7.1Monte Carlo Sampling Approach2105.7.2Validation of an Optimal solution5.8 SAA Method Applied to Multistage Stochastic Programmin205.8.1Statistical Properties of Multistage SAA Estimators22l5.8.2Complexity estimates of Multistage Programs2265.9 Stochastic Approximation Method2305.9Classical Approach5.9.2Robust sA approach..23359.3Mirror Descent sa method235.9.4Accuracy Certificates for Mirror Descent Sa Solutions.. 244Exercis6 Risk Averse Optimi2536.1 Introductio6.2 Mean-Risk models.2546.2.1Main ideas of mean -Risk analysis546.2.2Semideviation6.2.3Weighted Mean Deviations from Quantiles.2566.2.4Average value-at-Risk2576.3 Coherent risk measures2616.3.1Differentiability Properties of Risk Measures2656.3.2Examples of risk Measures..2696.3.3Law invariant risk measures and Stochastic orders2796.3.4Relation to Ambiguous Chance Constraints2856.4 Optimization of risk measures.2886.4.1Dualization of Nonanticipativity Constraints2916.4.2Examples...2956.5 Statistical Properties of Risk measures6.5.IAverage value-at-Ris6.52Absolute semideviation risk measure301Von mises statistical functionals3046.6The problem of moments306中2009/8/20page xContents6.7 Multistage Risk Averse Optimization3086.7.1Scenario tree formulation3086.7.2Conditional risk mappings3156.7.3Risk Averse multistage Stochastic Programming318Exercises3287 Background material3337.1 Optimization and Convex Analysis..334Directional Differentiability3347.1.2Elements of Convex Analysis3367.1.3Optimization and duality3397.1.4Optimality Conditions.............3467.1.5Perturbation analysis3517.1.6Epiconvergence3572 Probability3597.2.1Probability spaces and random variables7.2.2Conditional Probability and Conditional Expectation... 36372.3Measurable multifunctions and random functions3657.2.4Expectation Functions.3687.2.5Uniform Laws of Large Numbers...,,3747.2.6Law of Large Numbers for Random Sets andSubdifferentials3797.2.7Delta method7.2.8Exponential Bounds of the Large Deviations Theory3877.2.9Uniform Exponential Bounds7.3 Elements of Functional analysis3997.3Conjugate duality and differentiability.......... 4017.3.2Lattice structure4034058 Bibliographical remarks407Biibliography415Index4312009/8/20pageList of Notationsequal by definition, 333IR", n-dimensional space, 333A, transpose of matrix(vector)A, 3336I, domain of the conjugate of risk mea-C(X) space of continuous functions, 165sure p, 262CK, polar of cone C, 337Cn, the space of nonempty compact sub-C(v,R"), space of continuously differ-sets of r 379entiable mappings,176set of probability density functions,I Fr influence function. 3042L, orthogonal of (linear) space L, 41Sz, set of contact points, 3990(1), generic constant, 188b(k; a, N), cdf of binomial distribution,Op(), term, 382214S, the set of &-optimal solutions of theo, distance generating function, 236true problem, 18g(x), right-hand-side derivative, 297Va(a), Lebesgue measure of set A C RdCl(A), topological closure of set A, 334195conv(C), convex hull of set C, 337W,(U), space of Lipschitz continuousCorr(X, Y), correlation of X and Y 200functions. 166. 353CoV(X, Y, covariance of X and y, 180[a]+=max{a,0},2ga, weighted mean deviation, 256IA(, indicator function of set A, 334Sc(, support function of set C, 337n(n.f. p). space. 399A(x), set ofdist(x, A), distance from point x to set Ae multipliers vectors334348dom f, domain of function f, 333N(μ,∑), nonmal distribution,16Nc, normal cone to set C, 337dom 9, domain of multifunction 9, 365IR, set of extended real numbers. 333o(z), cdf of standard normal distribution,epif, epigraph of function f, 333IIx, metric projection onto set X, 231epiconvergence, 377convergence in distribution, 163SN, the set of optimal solutions of the0(x,h)d order tangent set 348SAA problem. 156AVOR. Average value-at-Risk. 258Sa, the set of 8-optimal solutions of thef, set of probability measures, 306SAA problem. 181ID(A, B), deviation of set A from set Bn,N, optimal value of the Saa problem,334156IDIZ], dispersion measure of random vari-N(x), sample average function, 155able 7. 2541A(, characteristic function of set A, 334吧, expectation,361int(C), interior of set C, 336TH(A, B), Hausdorff distance between setsLa」, integer part of a∈R,219A and B. 334Isc f, lower semicontinuous hull of funcN, set of positive integers, 359tion f, 3332009/8/20pageList of notationsRc, radial cone to set C, 337C, tangent cone to set C, 337V-f(r), Hessian matrix of second orderpartial derivatives, 179a. subdifferential. 338a, Clarke generalized gradient, 336as, epsilon subdifferential, 380pos w, positive hull of matrix W, 29Pr(A), probability of event A, 360ri relative interior. 337upper semideviation, 255Le, lower semideviation, 255@R. Value-at-Risk. 25Var[X], variance of X, 149, optimal value of the true problem, 1565=(51,……,5), history of the process,{a,b},186r, conjugate of function/, 338f(x, d), generalized directional deriva-g(x, h), directional derivative, 334O,(, term, 382p-efficient point, 116lid, independently identically distributed,1562009/8/20page xlllPrefaceThe main topic of this book is optimization problems involving uncertain parametersfor which stochastic models are available. Although many ways have been proposed tomodel uncertain quantities stochastic models have proved their flexibility and usefulnessin diverse areas of science. This is mainly due to solid mathematical foundations andtheoretical richness of the theory of probabilitystochastic processes, and to soundstatistical techniques of using real dataOptimization problems involving stochastic models occur in almost all areas of scienceand engineering, from telecommunication and medicine to finance This stimulates interestin rigorous ways of formulating, analyzing, and solving such problems. Due to the presenceof random parameters in the model, the theory combines concepts of the optimization theory,the theory of probability and statistics, and functional analysis. Moreover, in recent years thetheory and methods of stochastic programming have undergone major advances. all thesefactors motivated us to present in an accessible and rigorous form contemporary models andideas of stochastic programming. We hope that the book will encourage other researchersto apply stochastic programming models and to undertake further studies of this fascinatinand rapidly developing areaWe do not try to provide a comprehensive presentation of all aspects of stochasticprogramming, but we rather concentrate on theoretical foundations and recent advances inselected areas. The book is organized into seven chapters The first chapter addresses modeling issues. The basic concepts, such as recourse actions, chance(probabilistic)constraintsand the nonanticipativity principle, are introduced in the context of specific models. Thediscussion is aimed at providing motivation for the theoretical developments in the book,rather than practical recommendationsChapters 2 and 3 present detailed development of the theory of two-stage and multistage stochastic programming problems. We analyze properties of the models and developoptimality conditions and duality theory in a rather general setting. Our analysis coversgeneral distributions of uncertain parameters and provides special results for discrete distributions, which are relevant for numerical methods. Due to specific properties of two- andmultistage stochastic programming problems, we were able to derive many of these resultswithout resorting to methods of functional analvsisThe basic assumption in the modeling and technical developments is that the proba-bility distribution of the random data is not influenced by our actions(decisions). In someapplications, this assumption could be unjustified. However, dependence of probability dis-tribution on decisions typically destroys the convex structure of the optimization problemsconsidered, and our analysis exploits convexity in a significant way
    2020-12-09下载
    积分:1
  • Oracle DBA实战总结的维护手册
    Oracle DBA实战总结的维护手册
    2020-12-10下载
    积分:1
  • 随机森林工具包
    好用的随机森林matlab工具包,可以直接利用代码对数据进行分类和回归。
    2020-12-10下载
    积分:1
  • 非下采样轮廓波变换源码及文献
    这个文件里含有一篇文献和该文献的程序代码,主要是实现非下采用轮廓波变换。希望对大家有用!
    2020-12-06下载
    积分:1
  • android下的XMPP对应smack-4.2.1,实现登录,注册,发单聊,加聊天室,发群聊等简单功能
    android下的XMPP对应smack-4.2.1,实现登录,注册,发单聊,加聊天室,发群聊等简单功能
    2020-12-01下载
    积分:1
  • 数学建模--教学楼人员疏散-
    人员疏散 流体模型 距离控制疏散过程数学建模
    2020-11-02下载
    积分:1
  • 测试通过TMP75源码
    模拟iic读取TMP75今天花了一上午,把那几天没有弄出来的TMP75,搞出来了……其实我驱动程序都是写对了的,以前没有正确接收到温度的原因,在于C语言不扎实,想传个参数过去接收I2C的温度值 ,但是总会出错,接收到的数据总是0XFF,今天用了个最笨的方法,就是定义了两个全局温度变量来接收I2C的数据,结果一下子就不再是那个0XFF了,现在就把整个TMP75 驱动完成了 还有测试图片 精确率选的是12bits 0.625摄氏度,还是很准确de。
    2020-12-08下载
    积分:1
  • STM32/PLC/FX2N/序/KEIL4/5源码/单片机/仿三菱/断电保持16入16
    1、本程序运用C语言,根据三菱PLC_FX2N的通信协议和通信命令,基于主控芯片STM32F103XX(目前在STM32F103RC,STM32F103RD,STM32F103VC,STM32F103VD, STM32F103VE测试通过)上编写运行的程序,可以直接利用三菱编程软件编写梯形图下载运行,无需任何转换。目前至少支持的指令有:(其他指令亲可以自己添加) RST RSTS RSTTC OUT OUTS SET SETS ADD SUB MUL DIV LD LDI LDP LDF AND ANI OR ORI ANDP ANDF ORP ORF ADDP SUBP MULP DIVP MOV MOVP END FEND INC DEC INCP DECP CJ CALL RET INV LD= LD> LD< LD= AND= AND> AND< AND= 编程语言 梯形图 程序容量 8K步 内部寄存器D 8000个 定时器T 256个 记数器C 256个 输入点X 256个 输出点Y 256个 壮态继电器S 600个 辅助继电器M 3071点 M0-M3071 特殊功能: M8000(运行监视触点) M8001(运行监视反触点). M8002(初始化脉冲触点) M8003(初始化脉冲反触点) M8004(错误指示触点) M8011(10毫秒时钟脉冲) M8012(100毫秒时钟脉冲) M8013(1秒时钟脉冲) M8014(1分时钟脉冲) M8020(零位标志) M8021(借位标志) M8022(进位标志) M8029(指令执行结束标志) M8033(内存保持触点) M8034 (禁止输出触点). 更多参考FX2N系列。
    2019-07-13下载
    积分:1
  • mission planner中文参数 调参新手必备
    mission planner中文参数,新手调参必备,所有飞行模式,四旋翼无人机 六旋翼无人机 八旋翼,无人车 固定翼等等,全部参数中文对照表
    2020-12-02下载
    积分:1
  • 696518资源总数
  • 104582会员总数
  • 48今日下载