登录
首页 » Others » 西电的雷达原理第三版课本及习题答案

西电的雷达原理第三版课本及习题答案

于 2020-12-12 发布
0 335
下载积分: 1 下载次数: 3

代码说明:

西安电子科技大学雷达原理第三版电子书及课后习题答案

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • UKF的MATLAB
    该程序有详细的注释,易于读者理解与运用。
    2020-12-07下载
    积分:1
  • 卡尔曼滤波在雷达目标跟踪中的应用 matlab
    卡尔曼滤波在雷达目标跟踪中的应用 matlab程序
    2020-12-11下载
    积分:1
  • 农业物联网 温室大棚监控系统 客户端+服务器端
    本系统为农业物联网Android客户端应用程序,以温室大棚控制系统为例,界面简单且功能已基本实现并且易于扩展。服务器端采用Java语言编写,客户端与服务器端采用Socket通信,客户端能显示历史数据。模拟时,须将IP地址改为自己电脑的IP地址。
    2020-05-28下载
    积分:1
  • Jlink_ARM-OB_STM32固件(V8)
    可以升级J-link中固件,只需要SWD、SWC、GND三根线,即7号、9号及GND中的任意一根针,由于固件烧写一次后就不再使用(掉固件的可能性非常低),因此不需要再焊排针上去了,把杜邦排针插上去,斜方向给点力就能良好接触
    2020-11-02下载
    积分:1
  • 矩阵OR分解求解特征值及特征向量的fortran语言实现
    求一个矩阵A的全部特征值,并对其中的每一个实特征值求相应的特征向量 本实例采用fortran90格式编写
    2020-03-03下载
    积分:1
  • terrasar-x SAR数据
    terrasar-x的SAR数据,3景,直布罗陀,荷兰纳尔登,西班牙安达素尔
    2020-11-28下载
    积分:1
  • OFDM系统LS与MMSE信道估计算法仿真分析文献及仿真
    这是关于:OFDM系统LS与MMSE信道估计算法仿真分析文献及仿真程序,,希望对你有帮助,,欢迎下载。。。
    2020-12-05下载
    积分:1
  • 基于8086 的proteus仿真的4路竞赛抢答器(含电路图)
    微机课程设计 基于8086 的proteus仿真的4路竞赛抢答器 基本实现了,抢答,选手号码显示,计时显示的功能,运用8259a,8255,8253等芯片。
    2020-12-05下载
    积分:1
  • mysql5.5从零开始学附加光盘!
    mysql5.5从零开始学附加光盘!mysql5.5从零开始学附加光盘!
    2021-05-07下载
    积分:1
  • 稀疏自码深度学习的Matlab实现
    稀疏自编码深度学习的Matlab实现,sparse Auto coding,Matlab codetrain, m/7% CS294A/CS294W Programming Assignment Starter CodeInstructions%%%This file contains code that helps you get started ontheprogramming assignment. You will need to complete thecode in sampleIMAgEsml sparseAutoencoder Cost m and computeNumericalGradientml For the purpose of completing the assignment, you domot need tochange the code in this filecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencodtrain.m∥%%========%6% STEP 0: Here we provide the relevant parameters valuesthat willl allow your sparse autoencoder to get good filters; youdo not need to9 change the parameters belowvisibleSize =8*8; number of input unitshiddensize 25number of hidden unitssparsity Param =0.01; desired average activation ofthe hidden units7 (This was denoted by the greek alpharho, which looks like a lower-case pcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod4/57train.,m∥in the lecture notes)1 ambda=0.0001%o weight decay parameterbeta 3%o weight of sparsity penalty term%%==:79 STEP 1: Implement sampleIMAGESAfter implementing sampleIMAGES, the display_networkcommand shouldfo display a random sample of 200 patches from the datasetpatches sampleIMAgES;display_network(patches(:, randi(size(patches, 2), 204, 1)), 8)%为产生一个204维的列向量,每一维的值为0~10000curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod5/57train.m/v%中的随机数,说明是随机取204个 patch来显示%o Obtain random parameters thetatheta= initializeParameters ( hiddenSize, visibleSize)%%=============三三三三====================================97 STEP 2: Implement sparseAutoencoder CostYou can implement all of the components (squared errorcost, weight decay termsparsity penalty) in the cost function at once, butit may be easier to do%o it step-by-step and run gradient checking (see STEP3 after each stepWecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod6/57train. m vb suggest implementing the sparseAutoencoder Cost functionusing the following steps(a) Implement forward propagation in your neural networland implement the%squared error term of the cost function. Implementbackpropagation tocompute the derivatives. Then (using lambda=beta=(run gradient Checking%to verify that the calculations corresponding tothe squared error costterm are correctcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod7/57train. m vl(b) Add in the weight decay term (in both the cost funcand the derivativecalculations), then re-run Gradient Checking toverify correctnessl (c) Add in the sparsity penalty term, then re-run gradiChecking toverify correctnessFeel free to change the training settings when debuggingyour%o code. (For example, reducing the training set sizecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod8/57train m vl/number of hidden units may make your code run fasterand setting betaand/or lambda to zero may be helpful for debuggingHowever, in yourfinal submission of the visualized weights, please useparameters web gave in Step 0 abovecoS七grad]sparseAutoencoderCost(theta, visibleSize,hiddensize, lambda,sparsityParam, beta,patches)二〓二二二二二二二〓二〓二〓二〓=二====〓=curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod9/57train.m vlll96% STeP 3: Gradient CheckingHint: If you are debugging your code, performing gradienchecking on smaller modelsand smaller training sets (e. g, using only 10 trainingexamples and 1-2 hiddenunits) may speed things upl First, lets make sure your numerical gradient computationis correct for a%o simple function. After you have implemented computeNumerun the followingcheckNumericalGradientocurer:YiBinYUyuyibintony@163.com,WuYiUniversityDeep Learning, MATLAB Code for Sparse Autoencode10/57
    2020-12-05下载
    积分:1
  • 696518资源总数
  • 104600会员总数
  • 46今日下载