登录
首页 » Others » 稀疏自编码深度学习的Matlab实现

稀疏自编码深度学习的Matlab实现

于 2020-12-05 发布
0 150
下载积分: 1 下载次数: 3

代码说明:

稀疏自编码深度学习的Matlab实现,sparse Auto coding,Matlab codetrain, m/7% CS294A/CS294W Programming Assignment Starter CodeInstructions%%%This file contains code that helps you get started ontheprogramming assignment. You will need to complete thecode in sampleIMAgEsml sparseAutoencoder Cost m and computeNumericalGradientml For the purpose of completing the assignment, you domot need tochange the code in this filecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencodtrain.m∥%%========%6% STEP 0: Here we provide the relevant parameters valuesthat willl allow your sparse autoencoder to get good filters; youdo not need to9 change the parameters belowvisibleSize =8*8; number of input unitshiddensize 25number of hidden unitssparsity Param =0.01; desired average activation ofthe hidden units7 (This was denoted by the greek alpharho, which looks like a lower-case pcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod4/57train.,m∥in the lecture notes)1 ambda=0.0001%o weight decay parameterbeta 3%o weight of sparsity penalty term%%==:79 STEP 1: Implement sampleIMAGESAfter implementing sampleIMAGES, the display_networkcommand shouldfo display a random sample of 200 patches from the datasetpatches sampleIMAgES;display_network(patches(:, randi(size(patches, 2), 204, 1)), 8)%为产生一个204维的列向量,每一维的值为0~10000curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod5/57train.m/v%中的随机数,说明是随机取204个 patch来显示%o Obtain random parameters thetatheta= initializeParameters ( hiddenSize, visibleSize)%%=============三三三三====================================97 STEP 2: Implement sparseAutoencoder CostYou can implement all of the components (squared errorcost, weight decay termsparsity penalty) in the cost function at once, butit may be easier to do%o it step-by-step and run gradient checking (see STEP3 after each stepWecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod6/57train. m vb suggest implementing the sparseAutoencoder Cost functionusing the following steps(a) Implement forward propagation in your neural networland implement the%squared error term of the cost function. Implementbackpropagation tocompute the derivatives. Then (using lambda=beta=(run gradient Checking%to verify that the calculations corresponding tothe squared error costterm are correctcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod7/57train. m vl(b) Add in the weight decay term (in both the cost funcand the derivativecalculations), then re-run Gradient Checking toverify correctnessl (c) Add in the sparsity penalty term, then re-run gradiChecking toverify correctnessFeel free to change the training settings when debuggingyour%o code. (For example, reducing the training set sizecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod8/57train m vl/number of hidden units may make your code run fasterand setting betaand/or lambda to zero may be helpful for debuggingHowever, in yourfinal submission of the visualized weights, please useparameters web gave in Step 0 abovecoS七grad]sparseAutoencoderCost(theta, visibleSize,hiddensize, lambda,sparsityParam, beta,patches)二〓二二二二二二二〓二〓二〓二〓=二====〓=curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod9/57train.m vlll96% STeP 3: Gradient CheckingHint: If you are debugging your code, performing gradienchecking on smaller modelsand smaller training sets (e. g, using only 10 trainingexamples and 1-2 hiddenunits) may speed things upl First, lets make sure your numerical gradient computationis correct for a%o simple function. After you have implemented computeNumerun the followingcheckNumericalGradientocurer:YiBinYUyuyibintony@163.com,WuYiUniversityDeep Learning, MATLAB Code for Sparse Autoencode10/57

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 全网最稳定的JAVA彩票合买网站源码彩票系统开发网站APP开发源码
    天佐彩票程序系统源代码基于 Java + MySQL 开发,客户端使用 Objective-C + Java 原生开发。部署环境为Linux。支持分布式部署,支持大型彩票网站项目。页面架构采用 ReWriteR技术,以及Ajax 延时加载和网页静态化技术,提升页面加载速度,动态数据采用后加载、延时加载的方式,增强用户体验,降低服务器瞬间并发压力提升整体性能。java语言开发,spring mvc架构oracle数据库,页面程序分离多重审核机制,后台逻辑server接口可快捷接入app、webapp等其他应用。附有程序安装说明、前端demo账户和后台路径、管理账户和密码。
    2020-11-28下载
    积分:1
  • contourlet图像融合
    基于contourlet图像融合的matlab代码,可实现3种contourlet融合的方法
    2020-12-04下载
    积分:1
  • 基于stm32f103C8-ADC带ucos操作系统
    基于stm32f103C8-ADC带ucos操作系统
    2020-12-11下载
    积分:1
  • 33个matlab GUI实例,学习GUI必备
    总共33个matlab GUI实例,从入门到精通,包括所有基本用法,编程方法等
    2020-11-30下载
    积分:1
  • A*,Dijkstra,BFS路径搜寻算法演示
    This is a demo visualizing the execution of various path finding algorithms.不同算法的路径搜寻执行过程可视化程序。包含5个算法A* (曼哈顿距离)A* (欧式距离)A* (切比雪夫距离)Dijkstra Bi-Directional Breadth-First-Search
    2020-06-27下载
    积分:1
  • 摩托罗拉xts5000三代最新固件DVN4274P升级教.pdf
    【实例简介】摩托罗拉xts5000三代最新固件DVN4274P升级教程,最详细的升级教程。
    2021-11-24 00:35:32下载
    积分:1
  • 用opencv实现全景图拼接
    用opencv实现了全景图的拼接,环境已经配置好,不用重新配置,直接下载,用VS2010打开就可以直接运行。里面带了原图片,代码非常简单。
    2020-11-29下载
    积分:1
  • 安卓大作业之音乐播放器.zip
    【实例简介】参考网上一部分源码整合成一个简单地音乐播放器,可实现播放、切换、显示歌词等功能。开发环境:Android Studio 3.6
    2021-11-25 00:39:30下载
    积分:1
  • FOC矢量控制参考代码
    采用SVPWM和FOC矢量控制实现电机控制
    2020-11-28下载
    积分:1
  • 多传感融合的MATLAB方法
    多传感器融合的一部经典的英文著作,重点讲述融合方法及MATLAB实现方法
    2020-12-12下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载