登录
首页 » Others » 稀疏自编码深度学习的Matlab实现

稀疏自编码深度学习的Matlab实现

于 2020-12-05 发布
0 171
下载积分: 1 下载次数: 3

代码说明:

稀疏自编码深度学习的Matlab实现,sparse Auto coding,Matlab codetrain, m/7% CS294A/CS294W Programming Assignment Starter CodeInstructions%%%This file contains code that helps you get started ontheprogramming assignment. You will need to complete thecode in sampleIMAgEsml sparseAutoencoder Cost m and computeNumericalGradientml For the purpose of completing the assignment, you domot need tochange the code in this filecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencodtrain.m∥%%========%6% STEP 0: Here we provide the relevant parameters valuesthat willl allow your sparse autoencoder to get good filters; youdo not need to9 change the parameters belowvisibleSize =8*8; number of input unitshiddensize 25number of hidden unitssparsity Param =0.01; desired average activation ofthe hidden units7 (This was denoted by the greek alpharho, which looks like a lower-case pcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod4/57train.,m∥in the lecture notes)1 ambda=0.0001%o weight decay parameterbeta 3%o weight of sparsity penalty term%%==:79 STEP 1: Implement sampleIMAGESAfter implementing sampleIMAGES, the display_networkcommand shouldfo display a random sample of 200 patches from the datasetpatches sampleIMAgES;display_network(patches(:, randi(size(patches, 2), 204, 1)), 8)%为产生一个204维的列向量,每一维的值为0~10000curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod5/57train.m/v%中的随机数,说明是随机取204个 patch来显示%o Obtain random parameters thetatheta= initializeParameters ( hiddenSize, visibleSize)%%=============三三三三====================================97 STEP 2: Implement sparseAutoencoder CostYou can implement all of the components (squared errorcost, weight decay termsparsity penalty) in the cost function at once, butit may be easier to do%o it step-by-step and run gradient checking (see STEP3 after each stepWecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod6/57train. m vb suggest implementing the sparseAutoencoder Cost functionusing the following steps(a) Implement forward propagation in your neural networland implement the%squared error term of the cost function. Implementbackpropagation tocompute the derivatives. Then (using lambda=beta=(run gradient Checking%to verify that the calculations corresponding tothe squared error costterm are correctcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod7/57train. m vl(b) Add in the weight decay term (in both the cost funcand the derivativecalculations), then re-run Gradient Checking toverify correctnessl (c) Add in the sparsity penalty term, then re-run gradiChecking toverify correctnessFeel free to change the training settings when debuggingyour%o code. (For example, reducing the training set sizecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod8/57train m vl/number of hidden units may make your code run fasterand setting betaand/or lambda to zero may be helpful for debuggingHowever, in yourfinal submission of the visualized weights, please useparameters web gave in Step 0 abovecoS七grad]sparseAutoencoderCost(theta, visibleSize,hiddensize, lambda,sparsityParam, beta,patches)二〓二二二二二二二〓二〓二〓二〓=二====〓=curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod9/57train.m vlll96% STeP 3: Gradient CheckingHint: If you are debugging your code, performing gradienchecking on smaller modelsand smaller training sets (e. g, using only 10 trainingexamples and 1-2 hiddenunits) may speed things upl First, lets make sure your numerical gradient computationis correct for a%o simple function. After you have implemented computeNumerun the followingcheckNumericalGradientocurer:YiBinYUyuyibintony@163.com,WuYiUniversityDeep Learning, MATLAB Code for Sparse Autoencode10/57

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • OFDMA的matlab仿真
    很好OFDMA的matlab仿真程序,程序简明的对系统进行了仿真,OFDMA入门级资料-OFDMA of matlab simulation program well, the program simple system simulation, OFDMA entry-level data。
    2020-12-05下载
    积分:1
  • MATLAB 优化 26个测试函数
    MATLAB 优化问题 26个测试函数,直接使用即可,唉,前段时间费了好久时间写的,后来发现在网上有库,囧,给大家分享下。。。。
    2020-12-03下载
    积分:1
  • Dijkstra算法可视化(js实现)
    这是山东大学可视化课程项目,用js实现的dijkstra算法,详细的展示了dijkstra的实现过程,可交互
    2020-12-17 16:09:11下载
    积分:1
  • 共轭梯度法的matlab实现
    matlab编程实现最优化方法中的共轭梯度法。共享给有用的人。
    2020-12-08下载
    积分:1
  • 集成电力电子变换器及数字控制
    集成电力电子变换器及数字控制,这本书的电子版 ,清晰。内容涉及直流变换器及其数字控制方面知识
    2020-12-01下载
    积分:1
  • Paragon HFS for Windows
    hfs+ for windows 11破解版是款可以帮助用户进行访问windows分区的工具;它也是目前市场上比较稳定的一款软件,通过该工具,可以快速的进行访问您电脑上的HFS 、HFSX 分区,也为大家进行提供了可行的解决方案;软件已经进行了破解,如果需要进行使用的话,无需进行注册,即可快速的进行使用
    2020-11-03下载
    积分:1
  • MATLAB免疫遗传算法,在物流中心选址中的应用
    MATLAB程序,成功开发了优化的免疫遗传算法,并应用于物流中心的选址应用中,同时给出了详细的注解。可直接应用~
    2020-06-30下载
    积分:1
  • MFC实现文件传输
    用MFC实现局域网内点对点的大文件传输,内附txt文本文件对代码结构的详细讲述,对需要实现文件传输是个学习案例。
    2021-05-06下载
    积分:1
  • 风蓄联合优化
    风蓄联合优化运行程序,以风蓄联合运行经济效益最大为目标函数,考虑各种约束条件
    2020-12-12下载
    积分:1
  • 改进的自适应阈值Canny边缘检测
    针对传统Canny 边缘检测算法的阈值需要人为设定的缺陷,本文提出了一种新的自适应改进方法。该方法根据梯度直方图信息,提出梯度差分直方图的概念,同时,对图像进行自适应分类处理,使得算法不仅不需要人工设定阈值参数,而且还能有效地避免Canny 算法在边缘寻找中的断边和虚假边缘现象。对边缘信息丰富程度不同的灰度图和彩色图像运用该方法寻找边缘的实验结果表明,对于在目标与背景交界处的多数像素梯度幅值较大的图片,该算法具有边缘检测能力强、自适应能力强的优点
    2021-05-06下载
    积分:1
  • 696518资源总数
  • 104573会员总数
  • 29今日下载