登录
首页 » Others » Vehicle Dynamics Theory and Application

Vehicle Dynamics Theory and Application

于 2020-12-12 发布
0 168
下载积分: 1 下载次数: 1

代码说明:

不错的汽车动力学教材,是参与汽车底盘电子开发的动力学基础。Reza n. jazarVehicle DynamicsTheory and ApplicationsSpringerReza n. jazarDept of Mechanical EngineeringManhattan collegeRiverdale. NY 10471ISBN:978-0-387-74243-4e-ISBN:978-0-387-74244-1Library of Congress Control Number: 200794219c 2008 Springer Science+ Business Media, LLCAll rights reserved. This work may not be translated or copied in whole or in part without thewritten permission of the publisher(Springer Science+Business Media, LLC, 233 SpringStreet, New York, NY 10013, USA), except for brief excerpts in connection with reviews orscholarly analysis. Use in connection with any form of information storage and retrievalelectronic adaptation, computer software, or by similar or dissimilar methodology now knownor hereafter developed is forbidden. The use in this publication of trade names, trademarksservice marks and similar terms, even if they are not identified as such, is not to be taken as anexpression of opinion as to whether or not they are subject to proprietary rightsPrinted on acid-free paper987654321springer. comKavoshmy daughter, Vazan,and my wife, MojganHappiness is when you win a race against yourselfPrefaceThis text is for engineering students. It introduces the fundamental knowledge used in vehicle dymamics. This knowledge can be utilized to developcomputer programs for analyzing the ride, handling, and optimization ofroad vehiclesVehicle dynamics has been in the engineering curriculum for more thana hundred years. Books on the subject are available, but most of themare written for specialists and are not suitable for a classroom applicationA new student, engineer, or researcher would not know where and howto start learning vehicle dynamics. So, there is a need for a textbook forbeginners. This textbook presents the fundamentals with a perspective onfuture trendsThe study of classical vehicle dynamics has its roots in the work ofgreat scientists of the past four centuries and creative engineers in thepast century who established the methodology of dynamic systems. Thedevelopment of vehicle dynamics has moved toward modeling, analysisand optimization of multi-body dynamics supported by some compliantmembers. Therefore, merging dynamics with optimization theory was anexpected development. The fast-growing capability of accurate positioninsensing, and calculations, along with intelligent computer programming arethe other important developments in vehicle dynamics. So, a textbook helpthe reader to make a computer model of vehicles, which this book doesLevel of the bookThis book has evolved from nearly a decade of research in nonlineardynamic systems and teaching courses in vehicle dynamics. It is addressedprimarily to the last year of undergraduate study and the first year graduatestudent in engineering. Hence, it is an intermediate textbook. It providesboth fundamental and advanced topics. The whole book can be coveredin two successive courses, however, it is possible to jump over some sections and cover the book in one course. Students are required to know thefundamentals of kinematics and dynamics, as well as a basic knowledge ofnumerical methodsThe contents of the book have been kept at a fairly theoretical-practicallevel. Many concepts are deeply explained and their application empha-sized, and most of the related theories and formal proofs have been explained. The book places a strong emphasis on the physical meaning andapplications of the concepts. Topics that have been selected are of highinterest in the field. An attempt has been made to expose students to aPrefacebroad range of topics and approachese There are four special chapters that are indirectly related to vehicle dy-amics: Applied Kinematics, Applied Mechanisms, Applied dynamics, andApplied vibrations. These chapters provide the related background to understand vehicle dynamics and its subsystemsOrganization of the bookThe text is organized so it can be used for teaching or for self-studyChapter 1"Fundamentals, "contains general preliminaries about tire andrim with a brief review of road vehicle classificationsPart I"One Dimensional Vehicle Dynamics, " presents forward vehicledynamics, tire dynamics, and driveline dynamics. Forward dynamics refersto weight transfer, accelerating braking, engine performance, and gear ratiodesignPart II"Vehicle Kinematics, presents a detailed discussion of vehiclemechanical subsystems such as steering and suspensionsPart IIT"Vehicle Dynamics, employs Newton and Lagrange methodsto develop the maneuvering dynamics of vehiclesPart Iv "Vehicle Vibrations, presents a detailed discussion of vehi-cle vibrations. An attempt is made to review the basic approaches anddemonstrate how a vehicle can be modeled as a vibrating multiple degreeof-freedom system. The concepts of the Newton-Euler dynamics and La-grangian method are used equally for derivation of equations of motionThe RMS optimization technique for suspension design of vehicles is intro-duced and applied to vehicle suspensions. The outcome of the optimizationtechnique is the optimal stiffness and damping for a car or suspended equipmentMethod of presentationThis book uses a fact-reason-application"structure. The "fact"is themain subject we introduce in each section. Then the reason is given as a" proof. The application of the fact is examined in some examples. Theexamplesare a very important part of the book because they show howto implement the facts. They also cover some other facts that are neededto expand the subjectPrerequisitesSince the book is written for senior undergraduate and first-year graduatelevel students of engineering, the assumption is that users are familiar withmatrix algebra as well as basic dynamics. Prerequisites are the fundamentals of kinematics, dynamics, vector analysis, and matrix theory. Thesebasics are usually taught in the first three undergraduate yearsPrefaceUnit SystemThe system of units adopted in this book is, unless otherwise stated, theinternational system of units(SI). The units of degree(deg)or radian(rad)are utilized for variables representing angular quantitiesSymbolse Lowercase bold letters indicate a vector. Vectors may be expressed inan n dimensional Euclidian space. ExamplerCUppercase bold letters indicate a dynamic vector or a dynamic matrix, such as force and moment. ExampleFo Lowercase letters with a hat indicate a unit vector. Unit vectors arenot bolded. ExampleLowercase letters with a tilde indicate a 3 x 3 skew symmetric matrixassociated to a vector. Examplea3211An arrow above two uppercase letters indicates the start and endpoints of a position vector. ExampleON = a position vector from point o to point Ne The length of a vector is indicated by a non-bold lowercase letterExampleCapital letter B is utilized to denote a body coordinate frame. ExampleB(ocgB(Oxyz)B1(o1x19121)ⅹ11PrefaceCapital letter G is utilized to denote a global, inertial, or fixed coordinate frame. ExampleG(XYZG(OXYZRight subscript on a transformation matrix indicates the departureframes. ExampleRB= transformation matrix from frame B(oxyz)Left superscript on a transformation matrix indicates the destinationframe. ExampleRBtransformation matrix from frame B(o cgz)to frame G(OxYZ)Capital letter R indicates rotation or a transformation matrix, if itshows the beginning and destination coordinate frames. Example0BSIn a0Whenever there is no sub or superscript, the matrices are shown in abracket. ExampleCOS asin a osIn aCOs O0e Left superscript on a vector denotes the frame in which the vectoris expressed. That superscript indicates the frame that the vectorbelongs to; so the vector is expressed using the unit vectors of thatEr= position vector expressed in frame G(OXYZ)Right subscript on a vector denotes the tip point that the vector isreferred to. ExamplePsition vector ofexpressed in coordinate frame G(OXYZ)Right subscript on an angular velocity vector indicates the frame thatthe angular vector is referred to. ExampleB= angularof the body coordinate frame B(oxyz)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • Kohonen神经网络算法的matlab实现
    Kohonen神经网络算法工作机理为:网络学习过程中,当样本输入网络时,竞争层上的神经元计算输入样本与竞争层神经元权值之间的欧几里德距离,距离最小的神经元为获胜神经元。调整获胜神经元和相邻神经元权值,使获得神经元及周边权值靠近该输入样本。通过反复训练,最终各神经元的连接权值具有一定的分布,该分布把数据之间的相似性组织到代表各类的神经元上,使同类神经元具有相近的权系数,不同类的神经元权系数差别明显。需要注意的是,在学习的过程中,权值修改学习速率和神经元领域均在不断较少,从而使同类神经元逐渐集中。
    2020-12-03下载
    积分:1
  • 锁相环simulink仿真
    自己用simulink做的PLL仿真,需要的同志们可以看一下,互相交流
    2020-12-06下载
    积分:1
  • 基于SVM的特征选择(Feature selection for SVM)
    基于SVM进行特征选择。利用了凸优化方法。
    2021-05-06下载
    积分:1
  • STM32+OLED25664 音乐频谱+万年历(包含源码和原理图)
    基于STM32F103C8T6单片机的一款音乐频谱,附带万年历功能!包含原理图和源代码!
    2020-12-05下载
    积分:1
  • 三次样条插值函数csape的用法
    本程序是关于三次样条插值函数csape的用法,用matlab 编程,绝对是自己变得程序,运行良好。
    2020-11-29下载
    积分:1
  • labview 赛车游戏.zip
    【实例简介】赛车游戏
    2021-12-05 00:31:26下载
    积分:1
  • 毕业设计完整套餐
    从开题报告,到毕业论文,最后的论文答辩的ppt,全套资料,也是本人的倾心之做,毕业论文模式,和毕业设计主题 欢迎大家借鉴
    2020-12-07下载
    积分:1
  • 高斯多峰拟合
    高斯多峰拟合,需要数据基本符合高斯分布(正态分布)
    2020-11-28下载
    积分:1
  • Lab VIEW的DataSocket通信
    Lab VIEW的DataSocket通信
    2020-12-02下载
    积分:1
  • NAT穿透 c++实现
    一个C++ NAT的示例,并加上一批关于NAT穿透内网的文章,附一个NAT的示例图,供初学NAT的朋友学习用!
    2021-05-06下载
    积分:1
  • 696518资源总数
  • 104582会员总数
  • 48今日下载