2018年度中国主要城市交通分析报告
2018年度中国主要城市交通分析报告,《中国主要城市交通分析报告》以高德交通大数据发布平台、大数据开放平台、阿里云MaxCompute及相关数据挖掘支持为基础,描述城市交通现状、呈现演变规律、预测未来发展趋势,并专注拥堵成因及解决对策的研究。本年报由高德地图联合“中国社会科学院社会学研究所”、“未来交通与城市计算联合实验室”、“阿里云”、“重庆交通大学蔡晓禹教授团队”、“山地城市交通系统与安全重庆市重点实验室”、“华南理工大学林永杰团队”共同联合发布。高德地图愿开放数据与政府、企业、院校等研究机构合作,共建交通共同体。年度高德地圖概述中国主要城市交通分析报告Summary《中国主要城市交通分析报告》以高德交通大数据发布平台、大数据开放平台、阿里云 Maxcompute及相关数据挖掘支持为基础,描述城市交通现状、呈现演变规律、预测未来发展趋势,并专注拥堵成因及解决对策的硏究。本年报由高德地图联合“中国社会科学院社会学研究所”、“未来交通与城市计算联合实验室”、“阿里云”、“重庆交通大学蔡晓禹教授团队”、“山地城市交通系统与安全重庆市重点实验室”、“华南理工大学林永杰团队”共同联合发布。高德地图愿开放数据与政府、企业、院校等研究机构合作,共建交通共同体。联合发布品贴A未来交通与城市计算联含实验室JOINT LABORATORYc】阿里云FOR FUTURE TRANSPORT AN URDAN COMPUTINI年度高德地圖编制说明中国主要城市交通分析报告Report description调研城市:361城+全国高速城市范围:选取城市的中心城区作为城市道路网评价范围,各城市中心城区范围是根据政府公开数据、交通岀行大数据、高德地图开放平台定位数据、交通出行大数据综合挖掘研判划定样本说明:交通评价中,公共交通车流独立区分计算数据呈现:采用“九宫格”指标综合评价和表征城市交通运行健康状况,其中“路网高峰行程延时指数”、“路网高峰拥堵路段里程比”、“骨干道路运行速度偏差率”、“路网高延时运行时间占比”四项指标已兼容公安部、中央文明办、住房和城乡建设部、交通运输部四部委、办联合印发《城市道路交通文明畅通提升行动计划(2017-2020)》的第三方评估标准。时间说明:全天06:0-22:00早高峰07:00-09:00晚高峰17:00-19:00常规说明无特殊说明,本报告统计时间均为2018年1月1日~2018年12月31日分析范围:50城选取361+城市和全国高速50个城市高德地圖编制说明年度中国主要城市交通分析报告Report description指标扩维:路网行程延时指数->九宫格矩阵->健康诊断全国二大堵点治理方案备网高延通勤拥堵时间(时运行时)(压力经济损失九宫格路网高峰常发拥缓行路矩阵空间(拥堵路段】(堵路段】段里程交通健康指数里程比里程比广州沿江西路效率路网高峰平均(珠江北岸-沿江西路)行程延时速度更新说明指数出行扩维:增加公共交通重庆鸿恩路群众艺术馆一鸿恩寺立交私家车公共交通目录Catalog01主要城市交通运行现状交通健康指数立体诊断城市交通畅通文明工程指标研究公共交通运行分析02年度城市出行标签年度出行盘点城市边界及核心区发展03城市交通病解决方案未来交通与城市计算联合实验室年度成果展堵点治理方案年度高德地圖中国主要城市交通分析报告01中国主要城市交通运行现状年度高德地圖中国主要城市交通分析报告“交通健康指数”立体诊断城市交通“交通健康指数”计算说明高德地amap. Cam随着城市交通复杂性增加和智能交通的飞速发展,单一指标的评价和诊断已不能满足我国交通运行的多样化。高德首创城市交通病诊断的综合性评价“交通健康指数”来全面刻画城市交通运行状况,该指数从时间、空间、效率的九项交通运行指标的综合评价,实现城市全方位立体化智慧运行诊断。该指数算法沿用国际通用的信息熵法客观确定评价指标权重(该方法在政府权威部门、社会经济、学术领域的各类报告中得到广泛普遍应用);同时,采用 TOPSIS正负理想解的计算进行排名,最终评分结果代表各城市九宫格指标与理想值之间的接近程度。“交通健康指数”越髙说眀离理想值越近,城市运行相对越健康;指数越低则说明多项指标距离理想值越远,相对越不健康。九项指标信息熵权重分配■权重确定方法—熵值法排名得分方法—TOPS|s1)各项指标运用最大最小值归一化处理,并考1)对于反向指标采用取倒数进行同向处理,然后进行数据规范化效率一骨干时间一路网虑指标的正反向进行调整2道路运行速高延时运行度偏差率,时间占比2)计算第项指标下第个样本值占该指标的比重刻率一高峰平为11.6%114%/时间-通勤2)利用欧式距离计算与最优最劣目标的距离,并乘以权重压力指数pp9.8%;{z;-x)2,D:(21-2)2效率一路网高时间一日拥3〕计算第j项指标的熵值行程延时捐数,10.7%堵经济损失e=-k∑p;lm(P;),=1,…,m3)计算各评价对象与最优方案的贴近程度空间一高峰12.6%缓行路段里空间一路网D:+D程比,98%高峰拥堵路4)计算信息熵冗余度空间一常发段里程比值越接近1,表示评价对象越优秀。在城市健康指薮中,所得结果即代表着该城市健康拥堵路段里10.3%d1=1程比5)计算各项指标权重水平与最优目标的接近百分比。15.2%d∑d最终计算各指标权重如左图所示。2018年度中国“交通健康城市”分布热力图高德地amap. Cam2018年度中国主要城市“交通健康指数”分布热力图地域分布来看■从数据分布来看,一线及省会等大型城市的“交通健康指数”相对普遍较低;其指数与城市均值线差距较远,处于亚健康状态全国50个主要城市中,长三角地区除上海外大部分城市“交通健康指数”相对较高,处于相对健康状态,珠三角的大部分城市指数较高,相对处于亚健康
- 2020-12-09下载
- 积分:1
基于LMS 算法的多麦克风降噪
武汉理工大学 信息处理课设 基于LMS 算法的多麦克风降噪 给定主麦克风录制的受噪声污染的语音信号和参考麦克风录制的噪声,实现语音增强的目标,得到清晰的语音信号。2007控制科学与工程全国博士生学术论坛2007年8月其中日为语音信号与麦克风阵列所在平面的夹角,d为麦克风间距,c为声音传播速度,f为信号采样率。固定波束形成器通过延时求和单元产生参考语音信号y(n),y(n)与y(m)分别代表期望语音信号与噪声信号。y,(n)4x(m)=y(m)+y/(m(3)信号通过阻塞矩阵产生噪声参考信号用来估计波束形成输出信号中的噪声成分。选取B使其中任意行向量之和为零,即任意行向量线性无关。为了进一步降低噪声参考信号中的语音泄漏,参考文献“提出了用自适应阻塞矩阵替代固定阻塞矩阵的方法。ynly2nMM-[nJ]=BLun], u2n],umn自适应噪声抵消器ANC通过对输入噪声参考信号进行自适应滤波处理抵消了参考信号y,(m)中的噪声成分,得到增强的语音信号。em]=y[m-∑nnl3LMS自适应算法及改进31LMS自适应算法GSC架构中的自适应噪声抵消器ANC需要用增强的语音信号作为反馈对滤波器权值进行自适应更新。很多自适应算法基于LMS及其改进形式, Clark提出的块LMS算法使得滤波器的自适应逐块更新而非传统LMS滤波器逐点更新4, HOSHUYAMA、 Kellermann分别提出的基于范数约束自适应算法的权值更新,以及频域无约束实现。这些算法基本结构如图2所示y(n-1)(n-L+1)wo(ne(ny/(n)图2自适应横向滤波器结构图图2为图1中的M-1路L阶多通道自适应噪声对消器中某一路的展开形式,其抽头输入向量为[ym]yn-]yn-L+1],对应的抽头权向量为wmwn]w-]。LMS算法的梯度向量通过G2007控制科学与工程全国博士生学术论坛2007年8月计算抽头输入相关矩阵R和抽头输入与期望响应间互相关向量p得到VJ(n)=-2p+2Rv(m),将R和p的瞬态估计R(n)=y(m)y"(n),p(n)=y(n)y/(m)代入,得出梯度向量的瞬态估计:VJ(n)=-2y(n)y, (n+2y(n)y"(n)w(n)进而推出LMS算法权值更新公式为w(n+1)=w(n)+uy(n)Ly(n)-y"(n)w(n)32基于稳态噪声的自适应算法改进考查图2中具有L个抽头权值的LMS算法,抽头权值与抽头输入一一对应。在传统的逐点更新LMS算法中,每计算一个输出需要L次乘法,而更新一次抽头权值也需要L次乘法,故每次迭代需要2L次乘法。对于L个输出样值,所需要的乘法次数为2次。针对传统LMS算法复杂度高的缺点,Ca利用离散傅立叶变换在频域完成滤波器系数的自适应提出了快速块LMS箅法, Ann Spriet在此基础上通过改进LMS算法中的步长矩阵进一步降低了算法复杂度以上LMS算法改进均在图2的横向滤波器架构下进行,即抽头权值与抽头输入一一对应。考虑到稳态噪声的特点,本文提出了“一对多”的滤波器抽头权值更新算法,即L个输入样值共享一个滤波器权值。如此M路多麦克风语音增强系统中的ANC滤波器权值便由(M-1)×L维矩阵W[n=[w[η],n2[rl…wM-[r],其中H[n]=[won],w1[nw-r]退化为(M-1)×1维向量n]=[wryw2n],M-m]j。改进算法权值更新公式为w(n+D)=w(n)+uBu(nu"(n)[A-Bw(n)其中B为阻塞矩阵,A为固定波束形成器,为步长,U(n)为LxM维输入信号。与传统的“一对一”LMS滤波器相比,“一对多”结构在降低算法复杂度的同时,牺牲了前者具有的时间域严格对齐的特性。为降低这一缺点对系统降噪性能的影响,应在频域进行噪声对消,改进算法的多麦克风语音增强系统结构如图3所示。e(n)(n)B Yn图3改进的噪声消除算法结构图3中用虚线框表示可选滤波器权值w。由于实际应用中语音泄漏的存在,在参考语音信号中加入v能有效补偿由语音泄漏引起的语音崎变⑩。实际应用中由于阻塞矩阵输出不可避免的存在语音泄4642007控制科学与工程全国博士生学术论坛2007年8月漏,为了避免期望信号的消除,箅法中加入语音活动检测单元89,当前帧为噪声时更新滤波器系数,当前帧为语音信号时,滤波器系数不变33算法复杂度比较表1列出了本文算法与其他几种噪声消除算法之间算法复杂度的比较。我们采用实数乘法运算次数作为衡量算法复杂度的标准,每个N点傅立叶变换或其反变换需要Mlog2N次实数乘法运算。传统逐点LMS算法在时间域逐点更新滤波器权值。快速块LMS算法与多通道 Wiener算法通过FFT快速循环卷积特性实现LMS中的线性卷积运算,从而降低算法复杂度。本文算法在此基础上通过改进滤波器抽头权值更新算法进一步降低运算复杂度。由表1可见,当麦克风数目M4,L=32时,本文算法与多通道 Wiener滤波算法相比,R(3M+2)FT+8ML+2M63M+2)+4M2+6M_172(M+2)FFT+2ML6(M+2)+M40°文算法运算量降低了4倍左右。表1算法复杂度比较算法名称算法复杂度传统逐点LMS算法2ML快速块LMS算法(41(3M+2)FFT+16ML多通道 Wiener滤波算法53M+2)FFT+8M2+12M本文提出的算法(M+2)FF+2M…图4a)麦克风采集到的原始信号b)采用快速块LMS算法处理后的信号[4]c)采用多通道 Wiener滤波算法[10处理后的信号d采用本文算法处理后的信号4实验结果与分析实验采用线性排列的4个间距为4厘米的麦克风组成的语音采集系统,采样率为44KHZ,说话人位于阵列的正前方,噪声为稳态噪声,其与麦克风阵列法线所夹角度为50度。图4比较了麦克风采集到的信号、采用本文算法处理后的语音信号以及采用其他主流语音增强算法处理后的语音信号的时域波形。由4652007控制科学与工程全国博士生学术论坛2007年8月图4可见采用本文算法处理的语音信号背景噪声有明显降低。为进一步分析各种语音增强算法消噪能力,分别按照公式9计算各算法输出信号的信噪比,其中k代表帧序列号,N代表噪声,Y代表输出语音信号,L为帧长。∑(Y(k,2)2-|N(k,)SNRou(E)=10 log,o∑1MV6)图5釆用各箅法输出信号信噪比与输入信号信噪比之差来衡量噪声降低程度。由图5看出,在本文算法基础上在参考通道中加入可选滤波器权值能够进一步消除背景噪声,提高输出信噪比。苯文鲜法(使用权值w)木文好法未使用权值y块LMS算法Frame Number图5信噪比增强对比5结论本文在稳态噪声的前提下,提出了一种基于广义旁瓣消除器架构具有低算法复杂度的噪声消除算法,该算法通过改进LMS滤波器权值更新算法来达到降低算法复杂度的目的。实验结果证明,在稳态噪声环境下,该方法降噪性能优于传统LMS算法,同时有效降低了传统算法的算法复杂度。在现实生活中一些存在稳态噪声的场合,如发动机舱、厂房等该算法具有很强的实用价值。参考文献[U]LJ. Griffiths and C. W. Jim []. "An altemative approach to linearly constrained adaptive beamforming, IEEE Trans. AntennasProcess., voL. AP-30, no. I, pp 27-34, Jan. 1982.[2]0. Hoshuyama, A Sugiyama, and A Hirano [J]. "A robust adaptive beamformer for microphone arrays with a blocking matrixusing constrained adaptive filters, "IEEE Trans. Signal Process. vol 47, pp. 2677-2683, Oct. 1999[3]W. Herbordt and W Kellermann [J]. " Frequency-domain integration of acoustic echo cancellation and a generalized sidelobecanceller with improved robustness, "Eur. Trans. Telecommun., voL. 13, no 2, pp 123-132, Mar. -Apr. 2002.[4]Clark. G.A., S K Mitra, and S.R. Parker [J]. Block implementation of adaptive digital filters, "IEEE Trans. Circuits Syst,voL. CAS-28,PP584-592.1981.[5]Ann Spriet, Jan Wouters, Simon Doclo, Marc Moonen, "Frequency-Domain Criterion for the Speech Distortion WeightedMultichannel Wiener Filter for Robust Noise Reduction", Ap: //ftp. esat kuleuven. ac, be/pub/SISTA/doclo/reports/04-240 pdf[6JH. Buchner, J. Benesty, W. Kellermann J]. Generalized multichannel frequencydomain adaptive filtering: efficient realizationand application to hands free speech communication", Signal Processing 85(3), PP 549-570. 2005[7]W.Herbordt and W. Kellermann [A]. " Efficient Frequency-domain realization of robust generalized sidelobe cancellers", IEEE4662007控制科学与工程全国博士生学术论坛2007年8月Fourth workshop, multimedia signal Processing, PP. 377-382 2001[8]S. Van Gerven, F. Xie [J. "A Comparative Study of Speech Detection Methods", Proc. EUROSPEECH, VoL 3, Rhodos, Greecepp.1095-1098.1997[9]J Sohn, N.S.Kim, W Sung [] A Statistical Model-Based Voice Activity Detection", IEEE Signal Processing Lett. 6(1)1-31999[10]A Spriet, M. Moonen, J Wouters[]. Robustness Analysis of Multi-channel wiener Filtering and generalized sidelobeCancellation for Multi-microphone Noise Reduction in Hearing Aid Applications", IEEE Trans. Speech and Audio Processing, 13(4)PP.487-503.2005[IlJFerrara, E R r [] Fast implementation of LMS adaptive filters", IEEE Trans. Acoust. Speech Signal Process,voL.ASSP-28pp474-475.1980[12]S. Doclo and M. Moonen[J]. " Multi-microphone noise reduction using recursive GSVD-based optimal filtering with ANCpostprocessing stage, "IEEE Trans. Speech Audio Process., vol. 13, no. 1,Pp 53-69, Jan. 2005[13]Philipos C Loizou [J]. "Speech Enhancement Based on Perceptually Motivated Bayesian Estimators of the MagnitudeSpectrum" IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL 13, NO 5, Pp.857-869, 2005种新的基于稳态噪声的噪声消除算法旧WANFANG DATA文献链接作者:董鹏宇,朱子元,林涛作者单位:同济大学超大规模集成电路研究所,上海20009本文链接http://d.g.wanfangdata.comcn/confereNce6584700.aspx
- 2020-11-28下载
- 积分:1