登录
首页 » matlab » int

int

于 2009-04-09 发布 文件大小:1KB
0 195
下载积分: 1 下载次数: 14

代码说明:

  符号积分法,有中文注释,大家试试,供参考学习~(Symbolic integration, notes in Chinese, we try, for reference to learn ~)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • g_fitting
    使用正交多项式完成数据拟合。程序对读入的gps采样点完成曲线拟合。()
    2007-08-01 18:25:08下载
    积分:1
  • LSTM_learn-master
    采用LSTM算法用python语言实现的信号时间序列预测,可预测信号的占用度(The LSTM algorithm is used to predict the signal time series in python language)
    2017-10-13 09:45:28下载
    积分:1
  • fit_func
    Fitting curve distribution function拟合曲线分布函数(Fitting curve distribution function)
    2016-04-13 17:06:43下载
    积分:1
  • Chase
    用追赶法求解三对角方程组。在输入文件中读入矩阵和列向量,程序会在结果文件中返回结果。(Solving Three Diagonal Equations by Catching)
    2017-03-06 21:50:32下载
    积分:1
  • Simpleequationstoachieve
    说明:  利用该方程组求解一般的线性方程组,别且符合数学求解原理(Using the equations of linear equations in general, do not and in accordance with principles of mathematics to solve)
    2010-04-22 10:38:10下载
    积分:1
  • PMFFTaddF
    PMF FFT捕获技术捕获性能仿真,并与改进的捕获技术捕获性能比较(FFT PMF capture technology capture performance simulation, and capture performance comparison with the improved capture technology)
    2015-06-17 14:27:53下载
    积分:1
  • 11
    说明:  用二分法求解一元五次非线性方程的实数解,在高等电路学习中有很好的用途。(One yuan of five nonlinear equations dichotomy solving real solutions, there is a very good use in the higher circuit learning.)
    2012-10-27 20:52:45下载
    积分:1
  • aitejin
    艾特金迭代法求解线性方程组源代码,在程序中修改方程就可以(Aitkin iterative method for solving linear equations source code, the equation can be modified in the program)
    2012-06-03 16:08:11下载
    积分:1
  • SM3
    python编写SM3密码杂凑算法,测试字符串abc, abcd*16(written in python SM3 password hash algorithm, the test string abc, abcd.* 16)
    2012-08-04 15:34:55下载
    积分:1
  • Matlabcodes-RobustPCA
    Matlab codes for Robust PCA multivariate control chart(Robust PCA multivariate control chart mainly consists two steps: Step1 Calculates the robust mean and the robust covariance of original dataset using the minimum covariance determinant (MCD). In MCD technique, finding a subset containing half of the data such that its covariance matrix has the lowest determinant, then using this subset to calculate the robust mean and the robust covariance matrix (Hubert, Rousseeuw, & Branden, 2005) Step2 Standardize data using robust mean and robust standard deviation from Step1. Apply PCA analysis, calculate the principalcomponent score matrix Y=ZA, where Z is the robust standardized data matrix, and A is p*p matrix of eigenvectors (also called principalcomponents))
    2009-11-11 08:07:04下载
    积分:1
  • 696518资源总数
  • 106227会员总数
  • 11今日下载