登录
首页 » Others » lora 私有协议

lora 私有协议

于 2020-12-06 发布
0 154
下载积分: 1 下载次数: 1

代码说明:

基于SX1278的DEMO代码,已经调试过

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • 基于单片机的交通灯控制系统设计
    一、 功能分析硬件的设计采用89ATC51单片机为核心器件。并辅助复位电路,驱动电路,数码管及晶体管显示部分。通过中断扩展实现交通灯系统特殊情况的转换。软件设计部分分为一个主程序和两个中断子程序,一个用于有紧急车辆通过时,系统要能禁止普通车辆通行,实行中断可使A(东西道)、B(南北道)两道均亮红灯;另一个用于一道有车而另一道无车时,通过控制交通灯系统能立即让有车道放行,假如A道有车B道无车,长按K0可以控制交通灯系统能立即让东西道放行;假如南北道有车东西道无车,长按K1可以控制交通灯系统能立即南北道放行。十字路口的交通灯在工作时应具有如下特点:红灯表示该条道路禁止通行;黄灯表示该条道路上
    2020-11-27下载
    积分:1
  • HJ1A星全局法去条纹
    HJ1A星条带比较多,数据如若不经去条带处理会出现影像无法使用的情况,此程序专门针对HJ1A星进行条带去除,快捷方便!
    2021-05-06下载
    积分:1
  • 基于改进RBF的Q算法路径规划仿真MATLAB
    采用强化学习中的Q-learning算法实现移动机器人的局部路径规划,并引入资格迹,修改神经网络RBF的权值,使算法更有效地利用未知环境信息特征,以提高迭代过程中的收敛速度。
    2019-10-20下载
    积分:1
  • 基于遗传算法启发式算法退火算法的车间调度研究(代码+案例+说明)
    进阶生产规划及排程系统 便是利用先进的信息科技及规划技术,例如基因算法﹝Genetic Algorithm﹞、限制理论﹝Theory of Constraints﹞、作业分析 ﹝Operations Research﹞、生产仿真﹝Simulation﹞及限制条件满足技术﹝Constraint Satisfaction Technique﹞等,在考虑企业资源﹝主要为物料与产能﹞限制条件与生产现场的控制与派工法则下,规划可行的物料需求计划与生产排程计划,以满足顾客需求及面对竞争激烈的市场。进阶生产规划及排程亦提供了what-if 的分析,可以让规划者快速结合生产信息﹝如订单、途程、存货、BOM
    2020-12-05下载
    积分:1
  • 基于51单片机的步进电机控制 和 转速测量
    该程序实现键盘对四相步进电机的控制,12864显示,利用ST188传感器测量步进电机转速。
    2020-12-03下载
    积分:1
  • 用c语言实现的简单区块链
    用c语言实现的简单的区块链。包含交易的生成,区块的生成以及散列。不包含proof of the work 部分。
    2020-12-09下载
    积分:1
  • 晶圆缺陷检测与分类的卷积神经网络
    晶圆缺陷检测与分类的卷积神经网络;针对晶圆检验时扫描电镜图像的缺陷检测和缺陷分类两问题,采用了“ ZFNet”的卷积神经网络来分类晶圆缺陷,并基于该分类器实现了一种“基于块的卷积神经网络”缺陷检测算法。为了提高准确率和加快速度,又改动“更快的区域卷积神经网络”实现了另一种检测算法。第卷第期邡鑫,史峥:晶圆缺陌检测与分类的卷积神经网络ZENet classifierDarker ImIn.ril” HumpBitel检测算法示意图在训练检测器时,数据集是检测器原始尺寸的图像,且包含标记好的缺陷区域和类型。我们结构通过·系列数据扩张操作,得到组数据,随机选取相比于检测算法主作为训练集,作为测试集。要从以下三方面进行了针对性的改进算法中需要优化的参数有滑动窗口尺寸滑()针对重复计算卷积的缺点,采用先动步幅、概率阙值、面积阙值,由于无法求出统一计算特征图,再按)进行映射各参数与检测结果的明确关系式,所以采用遍历法优化参截取的办法。如图,先通过卷积网络(数。因为检测到的缺陷尽量正确和尽量检测到所有缺陷是)对输入图像计算得到其特征图,因为在输入图像矛盾的,故以精确率和召回率的调和平均值作为优上的都能映射到特征图上,所以从输入图像上按化目标,也可根据实际需要调整两者权重满足不同侧重。割取图像进行卷积运算可以替代为直接从特征图上按测试结果映射后的范围割取,从而避免多次重复计算卷积。由于用训练好的检测模型对测试集检的大小形状不·,而全连接层的神经元连接数是固定的,测,计算模式下每张图大概耗时如果检测到的缺所以对割取得到的子特征图,通过层次采样到统陷与标准答案的且类型相同,则判为正确,否尺寸以连接到全连接层。则判为错误。得到结果如表,计算得:laut Image精确率Feature Map召回率ROI其屮正确缺陷的平均表检测器测试结果数量正确错误network有缺陷(正类)图映射示意图从检测结果来看该算法基本实现∫对图像上晶圆()针对滑动窗口尺寸单·的缺点,增缺陷的检测和分类,但是值较低,缺陷检测位置不加了滑动窗口的尺寸类型,并且增加由一个全卷积网络准确,检测耗时较长,分析其原囚如下)组成的()检测出错的数据中,缺陷较大的类型易判断错,)来预判断是否有缺陷。本文采用面积缺陷较小的容易被漏掉,说明只使用一种尺寸的滑动框很分别为,长宽比分别为、共难适应尺寸变化范围较大的缺陷种尺寸的滑动窗口,依次计算其中有缺陷的概率,再从中)滑动框步幅减小则算法耗时平方倍增加,而步幅筛选出一定数量最有可能有缺陷的区域,进行非极大值抑过长造成缺陷概率分布图分辨率较差,从而检测到缺陷位制(),最后得到一定数置准确度较差量的候选区域。()相邻滑动框都有大量重叠,所以每个区域都被多()针对缺陷检测位置准确度差的缺点,次重复送入计算卷积,导致算法耗吋较长。在全连接层后连接一个边界回归层在与上述检测算法相似的图像目标检测领域,近来出用来修正缺陷位置,该回归层与分类层并列。现的很好的克服了以上缺点并取得了很好的针对本文的缺陷检测问题,直接套用标准效果,所以下面介绍如何通过改动实现品圆并不能解决问题。因为判断晶圆的缺陷类型通常需缺陷的检测与分类。要结合缺陷区域周围的图形信息,而在预判断是否有C1994-2017ChinaAcademicJournalElcctronicPublishinghOusc.Allrightsrescrved.http://www.cnki.nct计算机工程年月日缺陷吋还进行了边界回归。虽然更加准确的给出缺陷的位()将原尺寸为的图像调整为置,但送入检测网络的特征儿乎不包含缺陷周围图肜信息,使得滑动窗口尺寸能够适应缺陷大小的变化范围,也可以导致缺陷分类不准。故木文对标准徹了一些根据实际情况来具体调整。改动:得到缺陷检测算法如图,卷积网络(()将改为只判断滑动窗口内是否有缺陷,而,)将输入图僚转换成多种特征图;根据不进行边界回归,也就是只计算所有滑动窗口有缺陷的概特征图从滑动窗口中选出最有可能存在缺陷的率,选取可能性最大的个,做非极大值抑制,再选出层根据特征图中抽取出对应特征组成特可能性最大的个进行检测。征向量;检测网络()根据特征向()将卷积层的尺寸加大为,加大感受野量判断缺陷类型,并进行边界回归;最后通过和概率),从而在判断滑动框內是否有缺陷吋能参阈值对候选缺陷进行过滤即可得到最终缺陷。考更多的周围信息。Detection NetworkonFolutionnl actorSoftmaxRuI Puling liver,e Prop卟 edMS+PrubilitessionInput Image 1024*1024Fully 10 dyercrectCcrvchrionalLaver size 747图检测算法示意图模型训练和平均值作为优化目标,并且使用相同的训练集和图中的检测算法也是基于架构实现,因为卷测试集积网络提取的特征类型对相似普遍有效,故其卷积网络的测试结果参数是直接迁移第章分类器的卷积层参数。但是用训练好的检测模型对测试集检测,和的参数则需要通过方法进行训练,标准计算模式下每张图大概耗时,采用相同判定标准,提供了分开和联合两种训练方式。为了节约得到检测结果如表(其中负类总数与表中总数不同是因时间,本文采用联合训练方式,并结合缺陷检测问题的实为同一张图屮可能检测到多个缺陷),计算得际情况调整超参数精确率在训练时,对每张输入图像,要计算的滑动窗口召回率数量庞大(种尺寸的滑动窗口,滑动步幅)。所以从中随机抽取个作为训练集,其中正例其中正确缺陷的平均负例,且正例占比不超过。分类器采用表检测器测试结果损失函数数量正确错误在训练时,设置提供个,从中随有缺陷(正类)机选取个作为训练集,其屮正例无缺陷(负类)负例,且正例占比不超过。另外设置学从结果来看该算法各方面都优于检测算习率分类器采用损失函数,而边界回法和值更高说明检测检测缺陷类型正确归采用函数。且位置准确,而且速度也大大提高(检测一张图像耗时从为了与检测算法对比,在最后通过遍历法缩小到)。如图为检测缺陷示例,共中标注了缺陷优化和概率阈值时,同样以精确率和召回率的调位置、类型和对应概率C1994-2017ChinaAcademicJournalElcctronicPublishinghOusc.Allrightsrescrved.http://www.cnki.nct邡鑫,史峥:晶圆缺陷检测与分类的卷积神经网络I I图检测结果示例图结束语而对图像上的缺陷检测和缺陷分类这两个问题,本文提出的改动后的检测算法能够精准、快速地从图像中检测出缺陷并同吋进行分类。得益于卷积神经网络良好的特征学习能力,该检测算法能够根据标记好缺陷位置和类型的数据自动学习特征,从而尽量避免人工千预,使算法具有较强的适应能力。参考文献徐姗姗刘应安徐昇基于卷积神经网络的木材缺陷识别山东大学学报工学版刘云杨建滨王传旭基于卷积神经网络的苹果缺陷检测算法电子测量技术江帆刘辉王彬等基于模型的图像识别计算机工程C1994-2017ChinaAcademicJournalElcctronicPublishinghOusc.Allrightsrescrved.http://www.cnki.nct
    2021-05-06下载
    积分:1
  • MATLAB图像数字水印方案毕业论文(论文+源码)
    MATLAB图像数字水印方案毕业论文(论文+源码)论文主要目录图像数字水印的技术方案基于DCT域的图像数字水印技术离散余弦变换(DCT)的定义离散余弦变换的特点离散余弦变换的数字水印算法宿主图像的DCT变换数字水印的嵌入数字水印的检测MATLAB研究数字水印的优点MATLAB函数介绍基于离散余弦变法(DCT)实现数字水印技术图像水印的dwt算法
    2020-12-07下载
    积分:1
  • 华为产品visio面板图.rar
    【实例简介】华为产品visio面板图 在官网找到的
    2021-11-21 01:00:37下载
    积分:1
  • LTspice_MOS Tool.rar
    VDmostool软件是一款LTspice中MOS建模软件。它可以从MOS数据手册创建板级mosfet模型,该模型只能在LTspice中使用。 这是因为它利用了称为VDMOS的新mosfet模型,并且仅在LTspice中可用。 该设备替代了子电路模型,子电路模型通常不起作用,即使可以工作,也会因模拟运行太慢而无法完全使用。 LTspice中的VDmos模型不是子电路,而是使用模型语句的新的内置设备模型。 进行了一些改进,从而使模拟运行更快。
    2021-05-06下载
    积分:1
  • 696518资源总数
  • 104373会员总数
  • 24今日下载