船舶动力定位参数辨识
对船舶数学模型的各个推进器参数进行系统辨识,具有实际价值李文华,等:船舶动力定位系统数学模型参数辨识方法研究针对动力定位技术的发展,我国研究人员也进表1离散时间摘要扩展卡尔曼滤波行了积极有益的探索。文献[]用固定增益的卡尔f(k+1)=F((k),(k)+vw(k)曼滤波估计低频运动,而高频运动则用一个参数模系统模型量测|/(k)~N(O,Q(k》)x(k)=H((k)();型来模拟,并用递推增广最小二乘法来估计参数,从u(k)-N(0,Q(k)而估计出船舶的髙频运动。通过控制计算和模拟试初始情况1(0)+5np(0)=验取得了良好的效果。文献[12]提出了水面舰船动力定位控制系统模型参数的离线最速下降寻优的状态估计传递|(k+1)=F((k),()误差协方差传递辨识方法,提高了动力定位系统研制过程的工作效P(h+1)=(h)P()(k)+r(kQ(k )r(k)率。文献[13]在建立船舶三维几何模型基础上,对K()=P(k)HT(k)H()(kH()+R()]-满载船舶从浅水40m到深水500m的水动力系状态估计更新)=()1)((数进行数值计算。利用三维线性势流理论在频域误差协方差更新P)=kk)H(FLK)H()y里研究船舶在浅水中的辐射问题,应用三维源汇分K()R(k)K(k)布法对不同水深下船舶运动的水动力系数,包括附定义φ(k)=0()JH(-)加质量和阻尼系数进行数值计算与分析,得出了有(k)H(k)=0(k)限深水域的附加质量和阻尼系数的渐进特性。文献14]考虑具有修正PM波谱的长峰不规则浪,基于尾部隧道式侧推m,艏部隧道式侧推,艄部方海浪幅值响应算子(RAO研究了船舶在海浪中的六角式推进器。质量阵M可利用文献9]里介绍自由度运动预报模型。为了有效地量化海洋环境对的 Strip Theory计算得到:动力定位船舶的作用,文献[5提出了海洋环境负从/1127400018902-00744载(包括风、海浪和海流)的建模方法,并运用00.07440.1278MATLAB的M文件和SIMUⅠNK分别编制了风干为了得到需要辨识的量需重复进行3项(每项扰力和力矩计算及随机海浪的仿真程序。在三级海2次,共6次)海上试验,以此提高参数估计器的收况下,实现了对海洋环境的仿真,得到了合理的仿真敛性和表现。具体如下结果。文献[1]考虑到船舶的动态特性存在固有的第1项:解耦了的纵荡运动。船舶仅依靠主螺强非线性以及非线性控制改善系统性能和鲁棒性的旋桨山和实现恒速前进,艏向通过艏侧推控制。能力,将非线性控制理论应用到船舶动力定位控制第2项:结耦了的横荡与艏摇运动。通过三个隧道系统的设计中,对某供应船的计算机模型进行仿真,式推进器砌、4、实现两次结耦了的横荡与艏摇运验证了非线性控制系统是有效的。文献[17]提出并动。第3项:在结耦的横荡与艏摇运动中得到方位验证了基于线性核函数在线支持向量回归的模型预角式推进器u的推力系数K6测控制方案。在线支持向量回归算法的引入可以通第1项是为了计算主螺旋桨的推力系数K1和过在线调整,确保预测模型的精确性。Xa,需要的输入量是X本文中X的计算方法是利22船舶数学模型参数辨识用文献[19]里介绍的切片法。第2项是为了计算结文献[18]讨论了使用两个并行测量序列来估计耦了的横荡与艏摇运动的参数数值,可以辨识出的动力定位船舶模型参数的离线并行扩展卡尔曼滤波向量为[ YYNNK3K5]第3项是为了计算全方器算法(O- line parallel extended Kalman filter位推进器的推力系数K6( EKF) Algorithm),见表1。最后采用一项以供给船使用动量方程来代替标准动力学方程,不仅可为对象的全尺度的海上试验来验证提出的参数估计以显著提高状态和参数估计器的性能还具有以下器的收敛性和鲁棒性。优点:实验对象以挪威ABB公司的“ Far Scandia”号供(1)增加数据冗余度;给船为原型。该船总长762m,船宽18:8m,型深(2)降低量测噪声;825m,吃水625m,净吨位4200t,主发动机功率(3)降低环境干扰;3533kW。推进器配置左右舷两个主推进器u1、l2,(4)增加数据记录长度第23卷第3期(总第135期)船羔vd.23N.3012年6月shiP boatJune, 2012(5)以对参数分批进行辨识等手段提高参数辨风。将风速分量定义为识的精确度。L=v,cos(ψ图2显示了实验辨识得到的A和。其中A包(5)W V sin(B-0)含的待求未知量[XyYM而R包含的待求末式中和v分别为风速在X轴和Y轴的分量;v知量是[kk2k3k4k5k6]。和月分别表示风速和风向。如图1所示。假设风速远大于船速,风在纵荡、横荡和艏摇方向的负荷向量可表述为As elements.pAcM(o)V, IV0.5p.A_C-(r )V,V6)0.SpA,Lo C(rm)VV.式中,风的相对角为y=ψp为空气密度,单位e号为kgm3;Lm为船舶总长,单位为m;V为相对风速,103K elements单位为kn;A-和A为正投影面积和侧投影面积,2015单位均为m2;C(y)Cn(y)和C(4)分别为纵荡横荡和艄摇方向的无因次风系数,是通过 Isherwood半经验公式得到的。00003,波浪扰动数学模型波浪干扰力一般分为两种:一种是一阶波浪干图2实验辨识得到的参数曲线扰力,也称高频波浪干扰力。这是在假设波浪为微幅波,未引起船舶大幅摇荡的情况下,认为船舶受到经实验辨识出的动量方程中的量:与波高成线性关系并且与波浪同频率的波浪力。另0.03180种是二阶波浪力,也称波浪漂移力该波浪力与波A000602006l8高平方成比例。0.0075_0.2454这种具有高频率小振幅振荡特性的波浪所产生K=103ding([93,93,20,2.0,28,26]的一阶波浪干扰力最主要是引发船舶的纵摇和垂荡经过计算公式D-M得到运动,对横摇的影响稍次之,而对横荡及艄摇运动的002820影响相对来说就小一些。至于具有慢时变特性的二00.0130475900.081419676阶波浪干扰力,本身同时又是非线性的,它仍然和波写成动力定位模式下的状态空间表达式为:浪的频率有关。波浪的二阶漂移力不但会改变船舶元=AU+Bx(4)疔的航向和航迹,尤其对于在锚泊状态下船舶位置的移动及钻井平台的动力定位系统的工作等均有式中A=MA4M,并且B=MTK。其数值表达式为:重要影响00318000.062800030下面介绍一种估算二阶波浪漂移力方法。19740.0046-0.2428年, Newman提出一种应用频域波浪漂移力系数的0008200082000估算方法。通过把波谱(通常选用PM谱)分为N0∞505-069000108等份,每份有相对应的波浪频率m和波幅A。这样波浪漂移力对横荡、纵荡、艏摇运动的作用力计算公3环境扰动数学模型式为131风扰动数学模型A,(T(W,B=-y)1(W+)风的作用可分为平缓变化的风和快速变化的李文华,等:船舶动力定位系统数学模型参数辨识方法研究[5] Fossen T L. Handbook of Marine Craft Hydrodynamics and式中,T()x0是频域波浪偏移力公式fB是平均Motion Control[M]. Wiley Sons Ltd, 2011: 81-83.波浪方向:是随机的相角。[6] Balchen J G, Jenssen N A, Saelid S Dynamic Positioning可以通过对本估算式进行改变,以避免在数值Using Kalman Filtering and Optimal Control Theory[C]/上产生无物理意义的高频分量。还可对本式进行扩Proceedings of IFAC/IFIP Symposium on Automation in展,用来包括波浪蔓延( wave spreading)。Offshore Oil Field Operation Norway 1976: 183-18633海流扰动数学模型[7]Balchen J G, Jenssen N A Mathisen E, et al. Dynamic作用在海上动力定位船舶上的海流具有方向和Positioning System Based on Kalman Filtering and OptimalControl[J]Modeling, Identification and ControL 1980, 1(3)速度的特征,研究中一般不考虑在大地坐标系下铅135-163垂方向运动。海流分为恒定流和潮汐流。恒定流一般[8] Strand JP, Fossen t inonlinear Passive Observer Design为固定方向和速度的海流,如洋流。潮汐流指海洋for Ships with Adaptive Wave Filtering, In: New Directions因为潮汐运动而引起的海水流动,其典型的表现为in Nonlinear Observer Design(Nijmeijer H, Fossen T L)海流方向的缓慢变化。但对于动力定位来说,海流[M].London: Springer-Verlag London Ld, 1999: 113-134的大小与方向可以认为是确定的,所以海流的模型[9] Guttorm t, Jerome J, Fosset I. Nonlinear Dynamic可以统一按照大小和方向恒定来确立。流的速度分Positioning of Ships with Gain-Scheduled Wave Filtering量表示为5:[C]//The Proceedings of 43rd IEEE Conference orL=V2cos(ψ)Decision and Control, Atlantis, Paradise Island, BahamasDecemher2004:5340-5347ve=y sin(8-n)式中:和v分别为流速在X轴和y轴的分量;V10 i Do K d. Global Robust and Adaptive Output FeedbackDynamic Positioning of Surface Ships[C]/The Proceedings和月分别代表流速和流向。如图1所示。of 2007 IEEE Internati在此没有考虑第摇方向的流速,而海流对水面Automation. Roma, April 2007: 10-14船舶的作用可以通过将各海流速度分量引人到船的1]王晓声船舶动力定位系统设计及试验研究门J国造运动方程中由相对速度向量v=[u-,-a,r丁体现。船,1991(3):12-21[12]边信黔,严渐平,施小成船舶动力定位系统参数辨识4结论方法的研究[J]船舶工程,19994):36-38[13]姜哲,石珦,王磊动力定位船舶水动力参数数值试验本文讨论了船舶及推进器动力学数学模型与船研究[门]实验室研究与搡索,2005(12):14-17.舶外界环境干扰因素数学模型的建模策略。通过对14]李文魁张博田蔚风等.一种波浪中的船舶动力定位已有研究方法的分析研究与总结,有助于建立适用运动建模方法研究[]仪器仪表学报,2007(6):1051于各种海况和操作模式的船舶动力定位系统非线性数学模型。[15]施小成王元慧船舶动力定位海洋环境的建模与仿真J,计算机仿真,2006(11):237-239[16]刘芙蓉陈辉基于非线性控制理论的船舶动力定位控[参考文献制系统的数学模型[〕船海工程,209(5):92-95[1]杜佳璐,张显库汪思源,等船舶动力定位系统的自适[17]邓志良,胡寿松,张军峰船舶动力定位系统的在线模应非线性控制器设计[ C]/proceedings of the2 g chinese型预测控制[门中国造船,2009(6):879Control Conference. Beijing, 2010: 585-589.[2]周利,王磊,陈恒动力定位控制系统研究[船海[18] Fossen T I.Identification of Dynamically Positioned Shipe[].Control Engineering Practice, Volume 4, Issue 3, March程,008,37(2)86-911996:369-376[3]马超庄亚锋陈俊英船舶动力定位系统技术[J中国[19] FaltinsenO M Sea Loads on Ships and Oishore Structures造船,2009,50(增刊):52-57[4]贾欣乐,杨盐生船舶运动数学模型机理建模与数学建[M].Cambridge University Press, 1990:41-45模[M]大连大连海事大学出版社,199:294-356船舶动力定位系统数学模型参数辨识方法研究旧WANFANG DATA文献链接作者:李文华,杜佳璐,张银东,宋健,孙玉清,陈海泉, LI Wen-hua, DU Jia-luZHANG Yin-dong, SONG Jian, SUN Yu-ging, CHEN Hai-quan作者单位李文华,张银东,宋健,孙玉清,陈海泉, LI Wen-hua, ZHANG Yin-dong, SONG Jian, suN Yu-qing, chen Hai-quan(大连海事大学轮机工程学院大连116026),杜佳璐, DU Jia-lu(大连海事大学信息科学技术学院大连116026)刊名:船舶英文刊名:Ship boat年,卷(期):2012,23(3)参考文献(19条1. Balchen J G; Jenssen N A; Mathisen E Dynamic Positioning System Based on Kalmon Filtering andOptimal Control 1980(03)2. Balchen J G; Jenssen N A; Saelid S Dynamic Positioning Using Kalman Filtering and Optimal ControlTheory 19763. Fossen T I Handbook of Marine Craft Hydrodynamics and Motion Control 20114贾欣乐;杨盐生船舶运动数学模型机理建模与数学建模19995.马超;庄亚锋;陈俊英船舶动力定位系统技术2009(增刊)6.周利;王磊;陈恒动力定位控制系统研究[期刊论文]船海工程2008(02)7. Faltinsen 0 M Sea Loads on Ships and Offshore Structures 19908. Fossen t I Identification of Dynamically Positioned Ships 19969.邓志良;胡寿松;张军峰船舶动力定位系统的在线模型预测控制2009(06)10.刘芙蓉;陈辉基于非线性控制理论的船舶动力定位控制系统的数学模型[期刊论文]船海工程2009(05)11.施小成;王元慧船舶动力定位海洋环境的建模与仿真[期刊论文]计算机仿真2006(11)12.李文魁;张博;田蔚风一种波浪中的船舶动力定位运动建模方法硏究[期刊论文]仪器仪表学报2007(06)13.姜哲;石珣;王磊动力定位船舶水动力参数数值试验硏究[期刊论文]实验室硏究与探索2005(12)14.边信黔;严浙平;施小成船舶动力定位系统参数辨识方法的硏究[期刊论文]船舶工程1999(01)15.王晓声船舶动力定位系统设计及试验研究1991(03)Do K d Global robust and Adaptive Output Feedback Dynamic Positioning of Surface Ships 200717. Guttorm T; Jer(o)me J; Fossen T I Nonlinear Dynamic Positioning of Ships with Gain-Scheduled WaveFiltering 200418. Strand J P; Fossen T I Nonlinear Passive Observer Design for Ships with Adaptive Wave Filtering19.杜佳璐;张显库;汪思源船舶动力定位系统的自适应非线性控制器设计2010本文链接http://d.g.wanfangdata.comcn/periodiCalcb201203011.aspx
- 2020-12-03下载
- 积分:1
1588时间同步解决方案
很详细的1588V2方案,转给有需要的同学。。。。。。。。无线组网要求同频相邻基站空口同步、时隙对齐,任意两个基站之间帧头最大偏差不超过μ,否则会产生:时隙干扰:前一个时隙的信号落在下一个时隙中,破坏了这两个时隙内的正交码的正交性,使这两个时隙内的基站或终端都无法正常解调上下行时隙干扰:一个基站发射的信号直接对另一个基站的接收造成强大的干扰严重影响第二个基站的正常接收。本振源准确度变化需用时间频率码多天∠(铯钟)时钟×分钟铷原子钟分钟μ本地时钟和频率同步网守时能力无法满足需求,需要有时间同步机制依赖GPS存在的问题安全问题GPS系统存在安全隐患。天线GPS故障率:GPS部分已成为除射频模块外的第二高故障率设备,约占总故障放大数的15%左右。器同轴线施工问题接收机安装施工比较困难。GPS天线安装要求较高,选址困难,尤GPS馈线超过100米还需要增加放大器其是室内覆盖站。GPS替代方案GPS替代方案:卫星替代和有线替代分别解决安全隐患和施工问题卫星替代-采用北斗/GPS双模卫星授时模块替代目前单GPS模块,解决安全隐患。有线替代-采用基于PIN的1588V2地面传送方案,解决施工难题。时间源时间接收。Node B北斗时间传输Node bPTIPTNRNCNode B有线替代方案北斗系统介绍北斗一代卫星北斗一代卫星目前已覆盖中国及周边地区北斗一代卫星是同步轨道系统,有3颗卫星,采用2+1◆互为备份的工作模式。2003年开始民用,工作频率为2.49GHz。用户定位需要主动发送反馈信息,主控站收到后进行计算再向用户发送定位信息。单向授时无需授权,精度在200nS。北斗二代卫星目前已发射5颗北斗二代导航卫星,预计在2012年完成大中国区域覆盖,形成5个同步轨道卫星、3个倾斜2轨道卫星、4个中轨卫星的系统,2020年将累计发射35颗卫星完成全球覆盖。北斗二代将提供与GPS相同的4星授时方式,工作频率为1.5z,但北斗二代系统的5个同步轨道卫星将继续提供北斗一代的授时功能。1588V2时间同步原理PTP协议-|EEE1588V2双向时延={TS4TST)-S3TS2MasterSlave采用主从时钟方案,周期时ync la钟发布,接收方利用网络链ollow up[i1i」T1+Delav+offset路的对称性进行时钟偏移测Delay Req量和延时测量,实现主从时钟的频率、相位和绝对时间Delay Resp [11]的同步。14=7+Delay-OffsetEE的1588v2协议是今后分组网络中时间传送的重点技术、2007年12月定稿,2008年3月正式发布。15882能达到亚微秒级的同步精度,可同时提供频率同步和时间同步。1588V2基于包交换网,容易在P网上实现同步。1588v2基于 PIN/OTN网络传送的示意图时间同步设备时间同步设备时间同步信汇聚环汇聚环号流1、时间同步信号流,需OIN支持2、用PTN环贯通接入环588v2同步信号接入环接入环《》(《q》))(《费同步网现状时钟同步网时间同步网使用方式通过Mb/、2MH端口,为业务网元通过NTP接口,经P网向业务网元提供基准提供基准定时信号UTC时间信号服务对象交换网元、传输网元等需外时钟信号WAP、彩信、计算机系统设备等需基准时的业务网元间信号的网元现网设备厂家骨干网包括华为、迅腾两家骨干网为华为V3设备,本地网内基本未建本地网内以上述两家为主时间同步设备端口配置类型2Mb/s,2MHzNTP接口,|RG-B(DCLS)接口安装地点全国以北京、武汉、广州、沈阳、西各省会城市现有1台时间同步服务器,通过安配置的带铯钟PRC为地面基准时钟GPS获取UTC基准时间源,各省会城市配置带两套卫星接收机的LPR,共同组成一级基准时钟源其它各本地网内传输、交换节点安装BTS设备主要问题无法提供高精度时间同步精度在城域范围內仅100ms以内,无法满足高精度时间同步要求目前现网的时钟同步和时间同步均不能满足TD网络的时间同步要求,部署1588V2时间同步解决方案需新建高精度的时间同步设备。1588V2时间同步方案研究进展158V2已完成的工作实验室测试现网试点互通测试扩大试点2008年9-102009年9月-11月,完成多种传2009年4月-5月,在实验室完成2009年11月-12月,输设备的测试工月,在现网开展了地了PTN设备与TD设在现网6个城市组织开展作,基本涵盖了面传送1588V2的现备的时间同步接口基于PTN设备的1588V2时目前厂家支持的网试点测试互通测试,实现了间同步现网扩大规模试各种1588V2模不同厂家之间的互点,每城市TD基站规模在式通50个左右。性能测试兼容性测试规模应用主要完成的测试项目高精度时间服务器性能、主备时间服务器倒换性能、GPS/北斗时间源倒换性能、PIN1588路径倒换的影响、基站时间输出的长期性能(带内、带外连接)、基站I↓带内带外切换的影响、试点区域不同站点间业务测试等等。
- 2020-12-08下载
- 积分:1