利用Matlab提取图片中的数据
从事科研或者工程的人员在文档撰写过程中,常需要将文献中的曲线与自己的结果对比,为获取原始数据,一种常用的办法是手动描点,即将原始曲线放大然后打印出来,选取一定数量的点,读出其横纵坐标,然后重绘。对于较为平坦的曲线,这种方法当然可行,但当曲线数量增加,曲线变化复杂,这种方法工作量可想而知。前段时间由于原始数据丢失,仅剩几十幅图片,本人尝试过手动描点,经历几个小时奋战,实在无法继续,索性转向matlab,借助其强大的数据处理能力,编写了两个GUI的小软件image2data、data_poly提取数据,如今大功告成,遂于大家分享。坐标轴标定按下面板上的按钮进行图像放大,按钮恢复初始显示大小,钮采用鼠标拖动图像按钮退出放大或者拖动的鼠标操作模式,空格键表示取点操作,键表示删除上一次取点操作,状态栏的显示当前鼠标取点总数目(注意,初始点数为,然后存处个坐标轴标定坐标,剩余用来存储曲线坐标)。值得指山的是,每次放大或者拖动桨作完毕后,必须按下按钮,才能用空格键进行取点操作。匹回图00.400.351 MHz足0.300.2530 MHz0.20frequency>100 MHz型30681012141618REVERSE VOLTAGE (VFigure 1. RF Capacitance vs ReverseBias. HSMP-3810 Series图坐标轴定标曲线描点按照上述操作反复进行图像放大、拖动、取点,状态栏的和用于显示当前坐标(注紊,这个坐标图像坐标,轴方向向下,后面坐标变换需要考虑),下图给出了描点完毕后的曲线,可以看出取点基本代表了曲线的全部信息。0.45E0400351 MHz0.3002530 MHZ.frequency> 100 MHzpr/。no0.1568101214161820REVERSE VOLTAGE (V)Figure 1. RF Capacitance vs Reversem[1Bias. hsMP-3810 Series图曲线描点数据处理及存储。按下按钮,描点后的曲线会显示在图像当中,按下按钮,程序自动进行坐标转换,得到所有描点的真实坐标,按卜按钮,使会生成一个文木,数据记录其和按钮下都有文本输入框,本别代表输入文本和存储文本的名称,不带后缀)。045"z55sd0.351M3002530 MHafrequency>100 MHz0.1502468101214161820REVERSE VOLTAGE (VFigure l. RF Capacitance vs Reversese4Bias. HsMP-3810 Series图拟合曲线效果记事本巴回囟文件〕编辑巴)格式迫!查看y1帮助)6,6ag15-92h432562gP-6811.18153B60-91488g2c-8912.15288c-E914.81Q68c-691.93177一Bg1571882c-6E-8Ube-出14.168y!:e-Uk1面=363211g-9g1py9py6-6817.99日969e-B914。394g55e-919.6696599e-B913.941218e-0911.119913-Bg3.E786699g-6511.36361243.779192-6811,5邵3777e十3.71813e-6117699899e+053.6164171e-6911_97了5775巴十B035小B725-6612-3111uB!g318286-B12.了7阳7P??5"24"9236P-R13.12096E5e+gs2502的9e-6613.526859e-E日31756187e-651391427562B9.1158646e-6814_287193.806E87ge-651h。47785F7eB98,38E17e-61↓816F877e+2.9877229e-6615.342g3B6e-Eg2.92049e-6615,6428g1eB9g2.B86ge6168697eBgg28616e-816652032cE9g78786ggc-691图数据记录文本数据后处理由于以上数据是于动选取的,故分布不够均匀,下面我们通过数据拟合,然后重新采样得到等间距的数据(可能大家会问,为什么两个功能不做在起呢?数据拟合是个比较味烦的事情,本组曲线采用多项式拟合即可,可对于更多的曲线采用指数函数、正弦函数等才能得到比较好的结果中的工具箱就包含了很多的拟合函数,为避免重复工作,仅绵写了这个小软件用来数据拟合再采样,其他的拟合就靠了)。运行代表多项式拟合的阶数(一般就够用了),代表重新釆样的数据个数,其他几个就不用解释了,默认输入文本为输出文本为,数据拟合结果如下图所示Xmax 23 ymax045fing图数据拟合再采样结果至此,数据提取过程完毕,可能操作上有些不便(毕竞只是小T具而已),但比起于动描点的速度和精度,可谓小巫见大巫。软件编写要点这两个小软件从构思到完成大概用了两大,功能的完成绝大部分归功」丰富的函数库和方便的,其中用到的主要函数上要有列衣如下,更详的介绍请参阅文档。表主要函数列表除了上述函数的掌握之外,还需要对的数据结构和函数响应有一定的理解,在此就不多讲了(多看相关例程就明白了)。编写程序之前,首先心中要有一个框架,做些什么,怎么做,顺序如何等。本软件的结构如下图所示:导入图像创建数据结构坐枟轴定标曲线描点坐标变換数据后处彐:拟合、重新采样、存储图程序沇程示意导入图像程序段:创建数据结构程序段坐标轴定标及坐标变换:数据后处理代码段附录3.1描点数据列表数据拟合结果3.3、重新采样数据列表
- 2020-12-04下载
- 积分:1
基于视频的三维重建研究
这是一篇华中科技大学的硕士毕业论文,里面对三维重建技术的讲解很详细,适合作为综述来看独创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集休已经发表或撰写过的研究成果。对木文的研究做出贡献的个人和集休,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。学位论文作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关侏留、使用学位论文的规定,即:学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权华屮科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以釆用影印、缩印或扫描等复制手段保存和汇编本学位论文。保密口,在年解密后适用本授权书本论文属于不保密口。(请在以上方框内打“√”)学位论文作者签名指导教师签名:日期:年月日日期:年月日万方数据华中科技大学硕士学位论文摘要基于视频的重建技术在计算杋视觉领域中扮演着非常重要的角色,而如何恢复场景的三维模型是目前研究的热点与难点问题。本文围绕基于视频的场景重建技术展开讨论,包括棊于单目视频的三维场景重建和于双目视频的视差图和场景流获取。由于单目包含的深度信息比较少,如何基于单目视频恢复相机的运动参数以及目标的深度信息是研究的重与难点。双目视频虽然包含了非常显著的深度信息,但是考虑到视频中场景的迕续性问题,如何使得恢复岀的深度图保持前后帧的连续性以及场景中运动日标的一致性,也是比较困难的问题。因此,针对上述所提到的问题进行了深入的研究,具体的研究工作如下第一,对三维重建研究进行了详细的介绍,介绍了对于特征点匹配的理解以及我们提出的基于特征引导偏向性高斯混合模型( Feature Guided Biased GaussianMixture model,FGBG);详细介绍立体视觉中立体匹配算法的原理、分类及评测标准,并在4个典型的数据集上对有代表性的局部、全局、半全局算法进行对比实验。此外,详细介绍运动恢复结构(SFM)的基本原理,并进行了实验分析。第二,提岀一种基于双目视频的视差图和场景流获取技术。基于双目视频,首先获得初始的视差图和2D特征点轨迹;在此基础上获得初始的3D稀疏运动轨迹,利用本文提出的 Object Motion Hypothesis(OMH)算法获得运动物体的致性假设采用 slanted-plane model以及参考图像与前后时间点图像对的约束关系,构建超像素和运动物体之间的能量模型,通过优化获得视差和场景流的估计结果。第三,提出一种棊于单目视频的动态场景重建系统。在获取特征点轨迹的基础上,基于运动信息获得特征点轨迹的聚类结果;提出一种基于超像素的多标记Graph-cut算法,得到每一个日标的精确边界;为每一个运动日标分配一个虚拟相机通过标准的SFM方法分别单独估计每个运动目标对应的虚拟相机的参数和稀疏三维点云,通过PMVS和泊松表面重建获得目标的稠密重建结果。关键词:三维重建、单∏视频、双目视频、视差、场景流万方数据华中科技大学硕士学位论文Abstract3D reconstruction based on video has play an important role in computer vision, andhow to recover 3D scene model has been paid much attention and is a difficult problemBased on the importance of 3D reconstruction, in this paper, the 3D reconstruction basedon video has been studied, including 3D scene reconstruction based on monocular videoand depth map and scene flow estimating based on binocular video. Since the monocularcontains much less depth information, how to recover the camera motion and depth maphas been a difficult problem. Besides, although binocular view contains significant depthinformation, it is difficult to keep the consistency of depth map and moving objectsTherefore, in view of the problems mentioned above the specific research works are asFirst. we introduce two directions of 3D reconstruction in computer vision: based onstereo vision method and based on structure from motion. The stereo matching method hasbcen introduced in detail, including algorithm principle, classification, and evaluationmethod. And, we compare the global, local and semi-global algorithm on four typicaldataset. In addition, we have made a detail introduction of structure from motion(SFM)and the experiment has been carried out to get 3D point cloudSecond, a method for depth map and scene flow estimation is proposed. First, inputbinocular video, initial disparity map is got by SGM, 2 point trajectories are got byoptical flow. Then the 3D tracks are got by disparity map and 2D point trajectories, get theobject motion hypothesis. Considering constraint between the reference image and theforward-backward images, the energy model based on super-pixel and object isconstructed using slanted plane model. Finally, the depth map and scene flow will be gotThird, a method for reconstructing monocular dynamic scene with multiple movingrigid objects captured by a single moving camera is proposed. First of all, feature pointsare matched through the video sequence via the optical flow method and the tracks "aregot based on these matches. Then the tracks are divided into several groups according totheir motion differences. An improved graph cuts based multi-label auto imagesegmentation method is used to acquire the accurate boundary of each moving object and万方数据华中科技大学硕士学位论文the static background. Then we assume a virtual camera for each moving object and thestatic background. The pose of these virtual cameras are estimated via the standardStructure from Motion(SFM) pipeline. Finally a dense point set and textured model isreturned for each virtual camera. We evaluate our approach on real-world video sequenceand demonstrate its robustness and effectivenessKey words: 3D reconstruction, monocular video, binocular video, disparity, scenefleOw万方数据华中科技大学硕士学位论文目录摘要Abstract绪论1研究的背景及意义2国内外研究现状1.3论文的主要工作及结构···································:··········.················4·2三维重建基本方法研究2.1引言.………8)2.,2线性摄像机模型(8)23基于特征点的图像匹配24运动恢复结构方法(12)2.5立体匹配与三维重建···.·.·······.·················:····.····················(15)26本章小结(22)基于双目视频的视差图与场景流估计3.1引言(23)3.2运动目标的提取(25)3.3双向约束场景流模型..31)34实验分析.333.5本章小结(444基于单目视频的三维重建研究(45)4.2目标分割(464.3三维场景估计(51)万方数据华中科技大学硕士学位论文4.4实验分析(52)4.5本章小结(55)5全文总结与展望5.1木文的主要页献与创新点(56)5.2工作展望…7)致谢S8)参考文献非D·非非··非。非(59)附录万方数据华中科技大学硕士学位论文绪论11研究的背景及意义视觉是人类的基本功能。通过视觉,人们能够感知外部世界中物体的大小,以及辨别物体之间的相对位置,并且了解它们之间的相互关系。人类把这种功能称为视觉功能。随着科学技术的不断创新,新兴的电子产品不断涌现,数码设备的成熟和计算机理论的涌现让人们越来越关注计算机视觉。人们开始利用摄像机采集视频或者图像,并将其转化为人类可理解的信号。即利用计算机实现模仿人类视觉的功能,计算机视觉也就随之六生。计算机视觉是个涵盖多种学科知识的新兴学科。其理论研究的最终目的是通过对采集到的视频或者图像进行处理,将二维图像或视频转化为三维信息,从而感知场景或物体的形状及运动。因此,计算机视觉吸引了越来越多的研究人员参与其中,包括图像处理与模式识别,应用数学,计算札科学与技术等等。三维场景重建作为计算札视觉中一个重要的研究方向,受到许多研究者的青睐。最近,获取三维场景信息的方式主要有以下三种:第一种,利川常见的建模软件3DMax、CAD等进行重建;第二种,利用深度扫描仪、红外或者激光测距仪器等设备进行三维重建;第三种,利用计算机视觉原理,基于视频或者图像获取场景的三位模型。在上述方法中,第一种是最为成熟的,但是第一种方法的操作步骤十分复杂,并且建模周期长。第二种方式能够获得物伓的髙精度几何模型,但是这些仪器价格昂贵,费时费力,并且对于重建大型场景非常局限。因此,第三种方式受到了普遍的关注,它可以重建复杂的室外大型场景,真实感强,价格低廉且方便携带。利用图像或者视频对场景进行重建,即从图像或视频中恢复场景或者物体的三维几何信息,构建三维模型,给人以视觉亨受。三维重建的用途十分广泛,它可以用于机器人导航,无人驾驶,医学图像分析,游戏等众多方向在众多的三维场景重建方法中,于视频的重建方法一直是一个研究热点。其中,从单目视觉的角度出发,基于单目视频的三维重建技术就是利用单个摄像札对万方数据华中科技大学硕士学位论文场景进行拍摄,研宄如何利用图像序列光流估计运动物体或场景的三维运动来重建三维模型。从双日视觉的角度出发,基于双∏视频的三维重建技术就是利用两个摄像机,从两个不同的角度对同一个场景进行拍摄,研究如何利用左右两个图像序列各自的运动信息,以及左右视图之间的视差信息,完成场景的三维重建。本文的基于视频的三维重建技术具有十分重要的研究价值。针对双目视频,提出了一种基于双目视频的视差图和场景流获取技术,目的是同时获得视差图和场景流信息、。针对单目视频,提出个完整的基于包含多个刚体运动目标的单目动态场景视频的重建系统。12国内外研究现状121基于单目视觉的三维重建研究现状近年来,3D静态场景的重建己经取得了显著性的突破。其中,大多数的研究都是遵循一个特定的步骤:首先从一组多视角的图像中提取特征点,然后对多视图中的特征点进行匹配,构建基础矩阵,恢复相机参数,从而得到玚景的三维结构凹。其中, Snavely N主要通过SFM( (structure from motion)从无序图像序列中恢复相机的位置以及获得场景的三维稀疏点云倒。除∫稀疏点云的重建之外,很多学者也集中研究场景的三维稠密重建四。其中, Seitz s m对多种立体匹配算法进行比较,并且是第一个提供已标定的多视图数据集。 Kolev K在前者的基础之上提出了一个全局能量模型,融合了轮廪信息和立体信息。值得一提的是,深度信息也是一种非常有前景的3D重建方法,主要思想是通过恢复图像的深度信息,融合多幅深度图逃行稠密重建η。此外,很多研究集屮于基于单个视频的稠密表面重建,主要包括基于场景流( scene flow)s, mesh- based稠密表面重建例, patch-base稠密表面重。但是,大多数捕获的视频中,动态场景视频比铰常见。而上述的研究只能用于处理静态场景,它们在应对多目标运动场景方面是十分有限的。最近, Tron r提出了一个包含动态运动目标的场景分割标准山,它是·个重要的3D运动估计和重建的预处埋过程视频重建主要有于两个视图12和基于多个视图314其中,HanM和万方数据
- 2020-12-11下载
- 积分:1