登录
首页 » Others » 《粒子滤波原理及Matlab应用 》程序代码

《粒子滤波原理及Matlab应用 》程序代码

于 2020-12-04 发布
0 228
下载积分: 1 下载次数: 8

代码说明:

黄小平编著的《粒子滤波原理及应用》——Matlab仿真书中代码。本书主要介绍粒 子滤波的基原理及其在非线性系统中应用。为方便读者快速掌握本书主要介绍粒 子滤波的基原理及其在非线性系统中应用。为方便读者快速掌握本书主要介绍粒 子滤波的基原理及其在非线性系统中应用。为方便读者快速掌握本书主要介绍粒 子滤波的基原理及其在非线性系统中应用。为方便读者快速掌握本书主要介绍粒 子滤波的基原理及其在非线性系统中应用。为方便读者快速掌握本书主要介绍粒 子滤波的基原理及其在非线性系统中应用。为方便读者快速掌握本书主要介绍粒 子滤波的基原理及其在非线性系统中应用。为方便读者快速掌握本书主要介绍粒 子滤波的基原理及

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 相控阵雷达系统设计
    本文档介绍了相控阵雷达系统的设计原理,对于理解相控阵的工作方式,波束控制有很好的指导意义
    2020-11-28下载
    积分:1
  • 有限差分法的学习教
    这个教程是我们老师自己写的,有具体应用实例,很不错哦
    2020-11-03下载
    积分:1
  • 热敏打印ARM驱动例.zip
    微型热敏打印头的驱动例程,实现了打印头加热控制,电机PWM控制,缺纸检测等功能。
    2020-01-04下载
    积分:1
  • MATLAB计算对极线
    利用八点法求两幅图像之间的基础矩阵,并绘制对极线。先将自己要求对极线的两张图片放置解压后的根目录,运行selectpoints函数,运行完之后会保存需要的八组点,然后运行main即可。
    2020-11-30下载
    积分:1
  • Harris及ShiTomas角点检测
    角点检测:Harris角点及Shi-Tomasi角点检测 参考博客:http://blog.csdn.net/xiaowei_cqu/article/details/7805206
    2021-05-06下载
    积分:1
  • 北京大学-曹建-人工智能实践TensorFlow课件和代码)
    北京大学-曹建-人工智能实践TensorFlow课件和代码),代码测试通过
    2020-11-07下载
    积分:1
  • 基于高光谱成像的蓝莓内部品质检测 特征波长选择方法研究
    在特征波长选取方面有一些创新,可以作为参考。在特征波长选取方面有一些创新,可以作为参考。(基于高光谱成像的蓝莓内部品质检测特征波长选择方法研究古文君1 ,田有文 1* ,张芳1 ,赖兴涛 1 ,何宽1 ,姚萍1 ,刘博林 2)586-482016620010~15mm0.8~2.3g。fone3:(InSpector V10E, Spectral InFinland)1392pix×1040pixCCDL CCD2(IGV-B141OM, IMPERX Incorporated, USA), 150W1. CCD Camera; 2.Spectrometer; 3.Shot; 4. Light source; 5. Samples(3900 Illuminatior, Illumination Tech6.Translationplatform7.Lightsourcecontroller;8.computernologies inc.,USA)、(IRCP0076-19. Translation platform controllerCOM,)、(120cm×50cmx(DELL VoStro 5560D-1528Figure 1 Schematic diagram of hyperspectral imagingcmsystem400~1000nm,4722.8nmRRGY-4(10mm)(DBR45(successive projections algorithm, SPA(stepwise multiple linear regression, SMLR)(SPA)(SMLR)SPASPASMLRSPA-SPA、SMLR_SMLR、SPA- SMLRSMLR-SPA21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct5871.6BP(error back propagation)BP17(correlation coeffiient of calibration, Re)(root mean square error of calibration set, RMSEC)correlation coeffiient of pre-diction, Rp)(root mean square error of prediction set, RMSEP)ENVI 4.8(Research System Inc, ), MATLAB 2014a(The Math Works Inc)、TheUnscrambler9.7、 Excel2010(Ⅵ icrosoftdgle banddWcvef.BP models for soluble solidsThe selected characteristic wavelengthCurve of relative reflectanceExtract the region of interescontent and firmness prediction2figure 2 Flow chart of data processing280mm,68ms,28mm·s-。99%202.2600nm600nm2b2c)21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct5884823(2f)BPSavitzky-Golasavitzky -golayTable 1 The effect of different spectra preprocessingCalibration setPredictioSpectrum typeRMSECRMSEPOriginal spcctrum0.933/0.9230.3510.4040.9200.9100.508/0.319MSCThe spectrum after MSC processing0.940/0.9450.56lO.3120.9190.9320.516/0.282SNThe spectrum after SNV processin0.93709340.60210.24309220.9010.6320.462Savitzky-golayThe spectrum after Savitzky-Golay processing 0.955/0.9550.3240.2410.951/0.9490.400/0.2782.5SPA-SPA SMLRSMLR SPA-SMLR SMLR-SPASPA-SPASPASavitzky-GolaySPATable 2 The results of multi-stage characteristic wavelength selection methodnmCharacteristie wavelength selection methodSPA-SPA452,455,470,482,490,785,893,912,921,942,950455,470,482,785,893.912SMLR-SMLR457,508,516,534,543,51,556,568,712,720.774,778508,534,543,712,720,774SPA-SMLR452,455,470,482,490,785,893,912,921,942,950452,470,482,490,893,912SMLR-SPA457,508,516,534,543,551,556,568,712,720,774,78534,7202.6Savilzky-gola(FS)392SPA-SPASMLR-SMLRSMLR-SMLRSMLR-SPABPBP0.001500021994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct589BPBPSPA-SPARp RMseP0.9520.391°Brix,RpRMSEP0.9530.234BrixTable 3 Detection results of soluble solid content and firmness of blueberry based on different multi-stagecharacteristic wavelength selection methodsCalibration setPrediction setCharacteristic selection method Wavelength numberRMSECRMSEP3929550.9550.324/0.2410.9510.9490.400/0.278SPA-SPA0.9590.9560.3180.1530.9520.9530.391/0.234SMLR-SMLR0.9560.9340.414/0.243912109020.559/0.349SPA SMLR0.828/0.8581.3670.58582208091.440/0.719SMLR- SPA20.958/0.9360.402/0.3359320.9280.435/0,4041387nm1229nm91.5%BPRRMSEP0.904215.163lBP3Rv0.84V0.94Rv0.83,SEV0.63。400-1000nmSavitzky-GolayBPSPA-SPASPA-SPA21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct59048[1 KADER F,ROVEL. B Fractionation and identification of the phenolic compounds of highbush blueberries(Vaccinium corymbosumLUJ].Food Chemistry, 1996,55(1): 35-40「J,2012,33(1):340-342,2017,38(2):301-305.[4 MENDOZA F, LU R, ARIANA D,et al. Integrated spectral and image analysis of hyperspectral scattering data for prediction ofple [ruil firmness and soluble solids conlenl[J] Poslharvesl Biology and Technology, 2011, 62(2: 149-160[5 SUN M J, ZHANG D, LIU L,et al. How to predict the sugariness and hardness of melons a near-infrared [J]. Food Chemistry,2017,218(3:413-42116 SIEDLISKA A, BARANOWSKI P, MAZUREK W, ct al. Classification models of bruise and cultivar detection on the basis of hy-perspectral imaging data[J]. Computers and Electronics in Agriculture, 2014, 106: 66-74[7 LIU D, SUN D W, ZENG X N, el al. Recenl aDvances in wavelength seleclion lechniques for hyperspectral image processing inthe food industry[J]. Food Bioprocess Technol, 2014, 7: 307-323[8 ZHANG C, GUO C T, LIU F,et al. Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector ma-chine[j] Journal of Food Engincering, 2016, 179: 11-18[9J,2016,47(5:634-6402009,29(:1611-1615201536(12)171-17612]J,2012,32(11:3093309[13] LI B C, HOU B L, ZHANG D W,et al. Pears characteristics (soluble solids content and firmness prediction, varieties) testingInethods based on visible-near infrared hyperspecTral imaging[J]. OpLik, 2016, 127: 2624-2630[14] FAN S X, ZHANG B H,LI J B, et al. Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data[J. Postharvest Biology and Technology, 2016, 121: 51-61[15 RAJKUMAR P, WANG N,EIMASRY G, et al.Studies on banana fruit quality and maturity stages using hyperspectral imaging[ JIJournal of Food Engineering 2012, 108: 194-200,2015,36(16):10172015,35(8:2297-2302[18]WANG N,2007,23(2:151-155.「192008,39(5):91-9320」201536(10:70-74.[21] WU D, SUN D WAdvanced applications of hyperspectral imaging technology for food quality and safety analysis and assess-ment a review part T[J]. Innovative Food Science and Emerging Technologies, 2013, 19(4): 1-14J2014,35(8:57-61BP,2012.124」13,44(2):142-146.25],201523(6:1530-1537M011:41-48.[27,2013,24(10:1972-19762010,30(10):2729-2733?1994-2018ChinaAcadcmicJournaleLcctronicPublishingHousc.Allrightsreservedhttp://www.cnki.nct
    2020-12-07下载
    积分:1
  • simulink ip-iq谐波检测模型
    simulink ip-iq谐波检测模型,可用于提取电流谐波含量。
    2020-12-11下载
    积分:1
  • 基于单片机多功能智能清洁小车的设计(毕业设计)
    基于单片机多功能智能清洁小车的设计(毕业设计) 单片机 智能小车 清洁 循迹 避障 路径规划 模糊算法 压缩文件中包括了:硬件设计电路图和各个硬件模块的相关资料,源代码,毕设答辩PPT,毕业设计论文,外文翻译,查重报告,毕业设计老师提问的录入等,该课题的所有内容都录入压缩在里面
    2021-05-06下载
    积分:1
  • 使用kalman滤波实现动态行人检测与跟踪
    使用kalman滤波实现动态行人检测与跟踪
    2020-06-24下载
    积分:1
  • 696518资源总数
  • 104226会员总数
  • 29今日下载