登录
首页 » Others » QT写的超市管理系统

QT写的超市管理系统

于 2020-12-04 发布
0 229
下载积分: 1 下载次数: 1

代码说明:

自己在实习期间用QT写的超市管理系统,这是当时公司已经做过的项目,让我们拿来练手,最后答辩验收。我写的系统界面我觉得还是很漂亮的,并且功能齐全。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 稀疏自码深度学习的Matlab实现
    稀疏自编码深度学习的Matlab实现,sparse Auto coding,Matlab codetrain, m/7% CS294A/CS294W Programming Assignment Starter CodeInstructions%%%This file contains code that helps you get started ontheprogramming assignment. You will need to complete thecode in sampleIMAgEsml sparseAutoencoder Cost m and computeNumericalGradientml For the purpose of completing the assignment, you domot need tochange the code in this filecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencodtrain.m∥%%========%6% STEP 0: Here we provide the relevant parameters valuesthat willl allow your sparse autoencoder to get good filters; youdo not need to9 change the parameters belowvisibleSize =8*8; number of input unitshiddensize 25number of hidden unitssparsity Param =0.01; desired average activation ofthe hidden units7 (This was denoted by the greek alpharho, which looks like a lower-case pcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod4/57train.,m∥in the lecture notes)1 ambda=0.0001%o weight decay parameterbeta 3%o weight of sparsity penalty term%%==:79 STEP 1: Implement sampleIMAGESAfter implementing sampleIMAGES, the display_networkcommand shouldfo display a random sample of 200 patches from the datasetpatches sampleIMAgES;display_network(patches(:, randi(size(patches, 2), 204, 1)), 8)%为产生一个204维的列向量,每一维的值为0~10000curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod5/57train.m/v%中的随机数,说明是随机取204个 patch来显示%o Obtain random parameters thetatheta= initializeParameters ( hiddenSize, visibleSize)%%=============三三三三====================================97 STEP 2: Implement sparseAutoencoder CostYou can implement all of the components (squared errorcost, weight decay termsparsity penalty) in the cost function at once, butit may be easier to do%o it step-by-step and run gradient checking (see STEP3 after each stepWecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod6/57train. m vb suggest implementing the sparseAutoencoder Cost functionusing the following steps(a) Implement forward propagation in your neural networland implement the%squared error term of the cost function. Implementbackpropagation tocompute the derivatives. Then (using lambda=beta=(run gradient Checking%to verify that the calculations corresponding tothe squared error costterm are correctcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod7/57train. m vl(b) Add in the weight decay term (in both the cost funcand the derivativecalculations), then re-run Gradient Checking toverify correctnessl (c) Add in the sparsity penalty term, then re-run gradiChecking toverify correctnessFeel free to change the training settings when debuggingyour%o code. (For example, reducing the training set sizecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod8/57train m vl/number of hidden units may make your code run fasterand setting betaand/or lambda to zero may be helpful for debuggingHowever, in yourfinal submission of the visualized weights, please useparameters web gave in Step 0 abovecoS七grad]sparseAutoencoderCost(theta, visibleSize,hiddensize, lambda,sparsityParam, beta,patches)二〓二二二二二二二〓二〓二〓二〓=二====〓=curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod9/57train.m vlll96% STeP 3: Gradient CheckingHint: If you are debugging your code, performing gradienchecking on smaller modelsand smaller training sets (e. g, using only 10 trainingexamples and 1-2 hiddenunits) may speed things upl First, lets make sure your numerical gradient computationis correct for a%o simple function. After you have implemented computeNumerun the followingcheckNumericalGradientocurer:YiBinYUyuyibintony@163.com,WuYiUniversityDeep Learning, MATLAB Code for Sparse Autoencode10/57
    2020-12-05下载
    积分:1
  • 西门子调速(调速控制.smart)
    西门子调速(调速控制.smart)
    2019-06-18下载
    积分:1
  • hough变换的MATLAB
    用来计算Hough变换的函数,他可以帮助我们探讨基于hough变换的线检测
    2020-12-09下载
    积分:1
  • 基于压缩感知的二维雷达成像算法
    【实例简介】压缩感知理论能够有效地降低高分辨率雷达成像系统的数据率。该文通过对复基带雷达回波信号模型的稀疏性分析,提出了一种具有保相性的压缩感知距离压缩法。在此基础上建立了距离向采用压缩感知距离压缩算法,方位向采用传统的雷达成像算法处理的雷达2 维成像方案。通过对仿真和实测逆合成孔径雷达数据的成像处理验证了方案的有效性。
    2021-11-09 00:31:02下载
    积分:1
  • 优化设计-fmincon函数介绍-序列二次规划(SQP)-subspace_trust_region-active_sett.pdf
    【实例简介】优化设计-fmincon函数介绍-序列二次规划(SQP)-subspace_trust_region-active_sett
    2021-12-04 00:40:55下载
    积分:1
  • MATLAB烟花算法源代码
    优化算法,MATLAB烟花算法源代码,所有计算过程整合到一个m文件中,直接编辑适应度函数,即可实现求解计算
    2020-11-28下载
    积分:1
  • 车牌识别GUI+脚本
    淘宝上花钱买的车牌识别MATLAB代码,能够很好的识别车牌字母,有GUI和脚本两类。
    2021-05-06下载
    积分:1
  • HTML5旅游景区景点响应式网站模板
    HTML5旅游景区景点响应式网站模板基于Bootstrap3.3.5制作,自适应分辨率,兼容PC端和移动端,全套模板,包括首页、景区概况、文苑之旅、舒雅住宅、新闻动态、留言中心、联系我们等HTML企业模板页面。(本资源收集于互联网,如果侵权,请告知删除)
    2020-12-12 19:49:16下载
    积分:1
  • MBD代码生成详解
    对于simulink初学者来说,MBD与DSP代码生成详解是一个很好的例子教程,初学者可以快速的上手,而且随着学习的深入,你会发现simulink建模的优点。
    2020-11-30下载
    积分:1
  • xp系统自带黑体
    xp系统自带黑体,如果系统不是XP的显示的黑体不正确,可安装让黑体变正常.
    2020-12-07下载
    积分:1
  • 696518资源总数
  • 106182会员总数
  • 24今日下载