登录
首页 » Others » IEEE9-IEEE300节点数据(全)

IEEE9-IEEE300节点数据(全)

于 2020-12-03 发布
0 264
下载积分: 1 下载次数: 14

代码说明:

包括IEEE9、10、11、13、14、30、39、43、57、118、145、162、300节点全部潮流计算数据及IEEE9、39、145、162节点稳定计算数据,所有BPA现成程序均已编好,以及系统接线图全部包含

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 基尼系数matlab代码
    基尼系数与洛伦兹曲线matlab实现代码,可通过该代码对洛伦兹曲线与基尼系数进行拟合
    2020-12-04下载
    积分:1
  • 信号处理与分析(含FFT、包络、峰值检波、PeakVue)
    对一维信号进行分析与处理,包含FFT、包络、峰值检波、PeakVue等几种方法
    2020-12-05下载
    积分:1
  • 多功能数字时钟 数字电子技术课设计.rar
    【实例简介】多功能数字时钟 数字电子技术课程设计 里面包括3个文档和maxplus2仿真文件,非常详细
    2021-11-21 00:50:31下载
    积分:1
  • netcdf-4.1.3.tar.gz
    netcdf软件 读写nc格式文件,海洋和大气方向很有用哦!
    2020-12-12下载
    积分:1
  • KEIL5的注册机
    KEIL5的注册机KEIL5的注册机KEIL5的注册机KEIL5的注册机KEIL5的注册机KEIL5的注册机KEIL5的注册机KEIL5的注册机 全版本使用
    2020-12-09下载
    积分:1
  • MATLAB潮流计算
    此软件包是基于MATLAB2010平台编写的潮流计算软件,用于计算电力系统潮流,针对3机9节点,及经典39节点进行验证结果正确。压缩包里有代码的详细介绍。
    2021-05-06下载
    积分:1
  • 带串口通信的温度控制器(带proteus仿真)
    带串口通信的温度控制器(带proteus仿真),502at 573 51单片机 串口通信 proteus
    2020-12-08下载
    积分:1
  • STM32F103+Modbus通信源码
    基于STM32f103写的modbus通信,注释详细,UART串口采用接收中断、发送中断方式,以提高响应速度。提供的软件源代码,MDK5直接编译
    2020-11-27下载
    积分:1
  • MOEA/D -AWA算法实验代码
    MOEA/D with Adaptive Weight Adjustment 基于分解的动态权重算法
    2020-11-28下载
    积分:1
  • 【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy
    完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138
    2020-12-10下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 31今日下载