-
C# DLL 进程注入示例。
C# DLL 进程注入示例。C# DLL 进程注入示例。C# DLL 进程注入示例。
- 2021-05-06下载
- 积分:1
-
本科生毕业设计 基于jsp的小型旅游网站
这是大学本科生毕业设计作品 课题题目为基于JSP的小型旅游网站 该网站是以一旅行社为基准 面向网络中的所有客户 为其提供服务的小型旅游网站 已完成了网站的所有基础内容 该资源内有源代码 毕业设计论文 在论文中有详细的数据库建表过程 只需稍加修改即可使用 为了查重安全 也可选择其中有用的内容 该作品在大学中的毕业设计成绩为良 希望这个作品可以为您提供有用的帮助 也可以对其进行改进 谢谢!
- 2020-11-29下载
- 积分:1
-
我的C++自动化测试程序.zip
【实例简介】个人编程中比较喜欢重构,重构能够提高自己的代码质量,使代码阅读起来也更清晰。但是重构有一个问题,就是如何保证重构后带代码实现的功能与重构前的一致,如果每次重构完成后,对此不闻不问,则会有极大的风险,如果每次重构后,都进行一边测试,则工作量会很巨大,最终可能是即使代码有重构的欲望,也会尽量克制住,不去重构。除非代码能够进行自动化测试。实际上进行测试的是接口,而不是所有代码,只要能够保持接口不变,自动化测试的工作量也没有想象中的巨大。其实我们在单元测试的时候,会测试各种异常情况,只不过,没有将这些测试写成测试代码罢了。
在Java中有JUnit,在C#中有NUnit,在C++中,笔者并不知道有哪些自动化测试工具(笔者的孤陋寡闻)。于是就产生了自己写一个自动化测试程序的想法。
- 2021-11-24 00:46:15下载
- 积分:1
-
【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy
完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138
- 2020-12-10下载
- 积分:1
-
CC2430电路原理图和程序
这是一份关于CC2430方面的资料,里面包括电路原理图、pcb和程序代码
- 2020-12-03下载
- 积分:1
-
Oxford flowers17数据集,已打乱并划分 训练集、验证集、测试集
文章《Keras 入门课6 -- 使用Inception V3模型进行迁移学习》https://blog.csdn.net/tsyccnh/article/details/78889838 使用的数据集
- 2020-11-28下载
- 积分:1
-
纯Csm2算法源码
该资源时纯C源码,可以在任意平台下编译,,本人在QT下经过整理并调试通过,里面有测试数据,其功能有签名,验签,加密和解密等,在windows和linux都可以使用
- 2020-12-06下载
- 积分:1
-
lcl型并网逆变器的控制技术
lcl型并网逆变器的控制技术,lcl型并网逆变器的控制技术,lcl型并网逆变器的控制技术lcl型并网逆变器的控制技术,lcl型并网逆变器的控制技术
- 2020-12-12下载
- 积分:1
-
心率计,用proteus 仿真
课程设计,心率监护仪原理,简单的方针,可以借鉴借鉴
- 2021-05-06下载
- 积分:1
-
基于Matlab的二阶系统的模糊自适应PID控制仿真程序
本程序主要实现对二阶系统的模糊自适应PID控制,其中仿真过程加干扰,且被控对象可变
- 2020-12-05下载
- 积分:1