登录
首页 » Others » matlab 基于双门限的端点检测

matlab 基于双门限的端点检测

于 2020-11-30 发布
0 199
下载积分: 1 下载次数: 2

代码说明:

matlab 基于双门限的端点检测 小波分解,提取高频系数,计算能量,然后设定双阈值实现检测

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • labview怎样生成可执行exe文件
    labview怎样生成可执行exe文件labview怎样生成可执行exe文件
    2020-12-09下载
    积分:1
  • 稀疏自码深度学习的Matlab实现
    稀疏自编码深度学习的Matlab实现,sparse Auto coding,Matlab codetrain, m/7% CS294A/CS294W Programming Assignment Starter CodeInstructions%%%This file contains code that helps you get started ontheprogramming assignment. You will need to complete thecode in sampleIMAgEsml sparseAutoencoder Cost m and computeNumericalGradientml For the purpose of completing the assignment, you domot need tochange the code in this filecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencodtrain.m∥%%========%6% STEP 0: Here we provide the relevant parameters valuesthat willl allow your sparse autoencoder to get good filters; youdo not need to9 change the parameters belowvisibleSize =8*8; number of input unitshiddensize 25number of hidden unitssparsity Param =0.01; desired average activation ofthe hidden units7 (This was denoted by the greek alpharho, which looks like a lower-case pcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod4/57train.,m∥in the lecture notes)1 ambda=0.0001%o weight decay parameterbeta 3%o weight of sparsity penalty term%%==:79 STEP 1: Implement sampleIMAGESAfter implementing sampleIMAGES, the display_networkcommand shouldfo display a random sample of 200 patches from the datasetpatches sampleIMAgES;display_network(patches(:, randi(size(patches, 2), 204, 1)), 8)%为产生一个204维的列向量,每一维的值为0~10000curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod5/57train.m/v%中的随机数,说明是随机取204个 patch来显示%o Obtain random parameters thetatheta= initializeParameters ( hiddenSize, visibleSize)%%=============三三三三====================================97 STEP 2: Implement sparseAutoencoder CostYou can implement all of the components (squared errorcost, weight decay termsparsity penalty) in the cost function at once, butit may be easier to do%o it step-by-step and run gradient checking (see STEP3 after each stepWecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod6/57train. m vb suggest implementing the sparseAutoencoder Cost functionusing the following steps(a) Implement forward propagation in your neural networland implement the%squared error term of the cost function. Implementbackpropagation tocompute the derivatives. Then (using lambda=beta=(run gradient Checking%to verify that the calculations corresponding tothe squared error costterm are correctcurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod7/57train. m vl(b) Add in the weight decay term (in both the cost funcand the derivativecalculations), then re-run Gradient Checking toverify correctnessl (c) Add in the sparsity penalty term, then re-run gradiChecking toverify correctnessFeel free to change the training settings when debuggingyour%o code. (For example, reducing the training set sizecurer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod8/57train m vl/number of hidden units may make your code run fasterand setting betaand/or lambda to zero may be helpful for debuggingHowever, in yourfinal submission of the visualized weights, please useparameters web gave in Step 0 abovecoS七grad]sparseAutoencoderCost(theta, visibleSize,hiddensize, lambda,sparsityParam, beta,patches)二〓二二二二二二二〓二〓二〓二〓=二====〓=curer:YiBinYUyuyibintony@163.com,WuYiUniversityning, MATLAB Code for Sparse Autoencod9/57train.m vlll96% STeP 3: Gradient CheckingHint: If you are debugging your code, performing gradienchecking on smaller modelsand smaller training sets (e. g, using only 10 trainingexamples and 1-2 hiddenunits) may speed things upl First, lets make sure your numerical gradient computationis correct for a%o simple function. After you have implemented computeNumerun the followingcheckNumericalGradientocurer:YiBinYUyuyibintony@163.com,WuYiUniversityDeep Learning, MATLAB Code for Sparse Autoencode10/57
    2020-12-05下载
    积分:1
  • 斯坦福机器学习作业machine-learning-ex1,Linear Regression,线性回归
    斯坦福机器学习编程作业machine-learning-ex1,Linear Regression,线性回归题目,满分,2015最新作业答案
    2020-12-09下载
    积分:1
  • 卡尔曼的视频序列图像的目标跟踪
    卡尔曼的视频序列图像的目标跟踪程序,matlab编写,用于学习卡尔曼的目标跟踪方法
    2020-12-02下载
    积分:1
  • 实验室设备管理系统Java版
    Java版实验室设备管理系统 内含文档、演示文稿、源代码、数据库。开发技术Java、Sql Server。
    2020-12-03下载
    积分:1
  • 算法设计答案 Algorithm Design Solution
    算法设计答案 Algorithm Design Solution
    2020-12-06下载
    积分:1
  • 简单的三维重建系统
    这是基于opencv、ORB-SLAM2的三维重建系统,实现的是若干帧的从图像重建点云的功能,仅供学习交流之用,该资源对应的博文为:http://blog.csdn.net/yfic000/article/details/76177516有问题可以在该系列博文下回复我。
    2020-12-07下载
    积分:1
  • 状态反馈线性二次型最优控制器设计
    关于状态反馈线性二次型最优控制器设计的作业.
    2020-12-01下载
    积分:1
  • 2,1,7卷积码的viterbi译码算法的FPGA实现,内容详细,而且附带源代码.rar
    2,1,7卷积码的viterbi译码算法的FPGA实现,内容详细,而且附带源代码.rar
    2020-12-06下载
    积分:1
  • 光伏并网matlab模型
    用于matlab仿真的光伏发电并网模型,这是经典类型,可成功运行。做光伏并网读电能质量的影响中用到的。
    2020-06-13下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载