登录
首页 » Others » 一种基于VB编程的配电网可靠性评估算法

一种基于VB编程的配电网可靠性评估算法

于 2020-11-30 发布
0 523
下载积分: 1 下载次数: 4

代码说明:

提出了一种网络分层和递归算法相结合的复杂配电网可靠性评估算法。该算法首先通过对网络的分层处理,将其等效为树状目录结构,然后通过对此结构的递归遍历,计算网络中各等效节点的可靠性参数和配电网可靠性指标。该算法用VB 语言编程,并采用了可视化界面,使评估方法更加便捷,评估效率更高。实例计算表明了该方法的有效性。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 冒死上传公司车载设备源码 支持gps 音频 v4l2 视频
    模块思想 程序框架 高质量代码。界面与后台程序分离分层。 采用模块化思想封装装各个模块,除配置外只使用了个全局变量。含有gps,语音模块v4l2视频模块定时器线程
    2020-06-19下载
    积分:1
  • Multigen+CreatorVega+Prime无人机三维视景仿真系统
    2.1 Vega Prime开发过程 Vega Prime 作为一专业的视景仿真开发平台 其开发流程自成体描述了 Vega Prime 结合 Creator 进行视景仿真开发的通用流程[16] 3.1 OpenFlight(*.flt)数据库格式 OpenFlight 数据格式是 Multigen 公司将所要仿真的环境与对象通过数学方6
    2020-11-28下载
    积分:1
  • 北邮软工_分布式温控管理系统
    非常好的Qt程序 软件工程的程序 可以作为很好的参考
    2020-12-10下载
    积分:1
  • LMS与RLS自适应滤波算法性能比较
    介绍了自适应滤波器去除噪声的原理和从强噪声背景中采用自适应滤波提取有用信号的方法,并对最小均方(LMS, Least Mean Squares)和递推最小二乘(RLS, Recursive Least Squares)两种基本自适应算法进行了算法原理、算法性能分析。计算机模拟仿真结果表明,这两种算法都能通过有效抑制各种干扰来提高强噪声背景中的信号。检测特性相比之下,RLS算法具有良好的收敛性能,除收敛速度快于LMS算法和NLMS算法以及稳定性强外,而且具有更高的起始收敛速率、更小的权噪声和更大的抑噪能力。
    2020-12-12下载
    积分:1
  • 多智能体系统事件触发仿真序.rar
    【实例简介】本文基于最优线性二次型理论研究了带外部干扰的多智能体系统的最优控制问题. 首先在不考虑干扰的情况下,通过分析性能指标函数求得了最优的分布式控制协议. 然后假设系统存在外部干扰,采用DOBC的方法来估计实际扰动,在控制协议中增加干扰补偿项来消除干扰的影响. 接下来,将上述复合式控制协议设计为带有最小采样粒度的事件触发机制,运用现代控制理论和矩阵论等工具分析了多智能体算法,得到了分布式的事件触发条件. 最后,通过计算机仿真验证了本文所提算法的有效性.
    2021-11-20 00:31:11下载
    积分:1
  • psse序 大型算例 适合30和32版本
    psse的大型算例,还附有seq文件,30版的和32版的都有
    2020-12-03下载
    积分:1
  • 语音信号的倒谱分析过PPT
    语音信号的倒谱分析是语音信号处理的关键技术之一,特别是在特征提取中有特别的作用。
    2020-12-03下载
    积分:1
  • Robust Statistics - 2nd Edition
    鲁棒统计,现代统计方法, Robust Statistics第二版,学习现代统计方法R○ BUST STAT|STCSSecond editionPeter j, huberProfessor of Statistics, retiredKlosters SwitzerlandEⅣ ezio m. RonchettiProfessor of StatisticsUniversity of Geneva, SwitzerlandWILEYA JOHn WileY SONS INC. PUBliCAtIONCopyrightc 2009 by John Wiley Sons, Inc. All rights reservedPublished by John Wiley sons, Inc, Hoboken, New JerseyPublished simultaneously in CanadaNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form orby any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except aspermitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the priorwritten permission of the Publisher, or authorization through payment of the appropriate per-copy fee tothe Copyright Clearance Center, Inc, 222 Rosewood Drive, Danvers, MA 01923, (978)750-8400, fax978)750-4470,oronthewebatwww.copyrigom. requests to the publisher for permission shouldbe addressed to the permissions department John Wiley sons, Inc., 11 1 River Street, Hoboken, NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp:/www.wileycom/go/permissionLimit of Liability /Disclaimer of Warranty: While the publisher and author have used their best efforts inpreparing this book, they make no representations or warranties with respect to the accuracy orcompleteness of the contents of this book and specifically disclaim any implied warranties ofmerchantability or fitness for a particular purpose. No warranty may be created or extended by salesrepresentatives or written sales materials. The advice and strategies contained herein may not be suitablefor your situation. You should consult with a professional where appropriate. Neither the publisher norauthor shall be liable for any loss of profit or any other commercial damages, including but not limitedto special, incidental, consequential, or other damagesFor general information on our other products and services or for technical support, please contact ourCustomer Care Department within the United States at(800)762-2974, outside the United States at(317)572-3993 or fax(317)572-4002.Wiley also publishes its books in a variety of electronic formats. Some content that appears in print maynot be available in electronic format. For information about wiley products, visit our web site atwww.wileycomLibrary of Congress Cataloging-in-Publication Data:Huber Peter JRobust statistics, second edition/ Peter J. Huber, Elvezio ronchettip. cnIncludes bibliographical references and indeISBN978-0-470-12990-6( cloth)1. Robust statistics. I. Ronchetti. elvezio. II. TitleQA276.H7852009519.5-dc222008033283Printed in the United States of america10987654321To the memory o1John w. tukeyThis Page Intentionally Left BlankCONTENTSPrefacePreface to first editionGeneralities1 Why robust Procedures1. 2 What Should a robust procedure achieve?1.2.1 Robust. Nonparametric and Distribution-Free1.2.2 Adaptive procedures1.2.3 Resistant Procedures1.2. 4 Robustness versus Diagnostics1.2.5 Breakdown point1.3 Qualitative Robustness567888911. 4 Quantitative Robustness1.5 Infinitesimal Aspects141.6 Optimal Robustness171.7 Performance Comparisons18CONTENTS1.8 Computation of robust estimates181.9 Limitations to Robustness Theory202 The Weak Topology and its Metrization23eneral remarks232.2 The Weak Topology232.3 Levy and prohorov metrics272.4 The bounded Lipschitz metric322.5 Frechet and Gateaux derivatives366 Hampels Theorem413 The Basic Types of Estimates453. 1 General Remarks453.2 Maximum Likelihood Type Estimates(M-Estimates)3.2.1 Influence Function of m-estimates73.2.2 Asymptotic Properties of M-Estimates483.2.3 Quantitative and Qualitative Robustness of MEstimates3.3 Linear Combinations of Order Statistics(L-Estimates)3.3.1 Influence Function of -Estimates3.3.2 Quantitative and Qualitative robustness of l-Estimates 593. 4 Estimates Derived from Rank Tests(R-estimates3.4.1 Influence Function of R-Estimates623.4.2 Quantitative and Qualitative robustness of R-Estimates 643.5 Asymptotically Efficient M-, L,and R-Estimates674 Asymptotic Minimax Theory for Estimating Location4.1 General remarks4.2 Minimax bias4.3 Minimax Variance: Preliminaries744. 4 Distributions minimizing fisher Information764.5 Determination of Fo by Variational Methods814.6 Asymptotically Minimax M-Estimates914.7 On the minimax Property for L-and R-estimates954.8 Redescending m-estimates74.9 Questions of Asymmetric Contamination101CONTENTSScale Estimates1055.1 General remarks1055.2 M-Estimates of scale1075.3 L-Estimates of scale5.4 R-Estimates of Scale1125.5 Asymptotically efficient Scale estimates1145.6 Distributions Minimizing fisher Information for Scale5.7 Minimax Properties116 Multiparameter Problemsin Particular Joint Estimationof Location and scale1256. 1 General remarks1256.2 Consistency of M-Estimates1266.3 Asymptotic Normality of M-Estimates1306. 4 Simultaneous m-Estimates of Location and scale1336.5 M-Estimates with Preliminary Estimates of Scale1376.6 Quantitative robustness of Joint Estimates of Location and Scale 1396.7 The Computation of M-Estimates of Scale14368Studentizing1457 Regression1497. 1 General remarks1497. 2 The Classical Linear Least Squares Case1547. 2.1 Residuals and Outliers1587.3 Robustizing the Least Squares Approach1607.4 Asymptotics of robust regression Estimates163741 The Cases hp2→0 and hp→07.5 Conjectures and Empirical Results1687.5.1 Symmetric Error Distributions1687.5.2 The Question of Bias1687.6 Asymptotic Covariances and Their estimation1707. 7 Concomitant Scale estimates1727.8 Computation of Regression M-Estimates1757.8.1 The Scale Step1767.8.2 The Location Step with Modified residuals1787.8.3 The Location Step with Modified Weights179CONTENTS7.9 The Fixed Carrier Case: What Size hi?1867. 10 Analysis of Variance1907. 11 LI-estimates and Median polish1937. 12 Other Approaches to Robust Regression1958 Robust Covariance and Correlation Matrices1998. 1 General remarks8.2 Estimation of Matrix Elements Through robust Variances2038.3 Estimation of Matrix Elements Through robust Correlation2048.4 An Affinely equivariant approach2108.5 Estimates Determined by Implicit Equations2128.6 Existence and Uniqueness of Solutions2148.6. 1 The Scatter estimate v2148.6.2 The Location estimate t2198.6.3 Joint Estimation of t and y2208.7 Influence Functions and Qualitative robustness2208.8 Consistency and asymptotic normality2238.9 Breakdown Point48.10 Least informative distributions2258.1058. 10.2 Covariance2278.11 Some Notes on Computation2339 Robustness of Design2399.1 General remarks2399.2 Minimax Global Fit9.3 Minimax Slope24610 Exact Finite Sample Results24910.1 General Remarks24910.2 Lower and Upper Probabilities and Capacities25010.2.1 2-Monotone and 2-Alternating Capacities25510.2.2 Monotone and Alternating Capacities of Infinite Order 25810.3 Robust Tests25910.3. 1 Particular Cases26510.4 Sequential Tests267
    2020-12-03下载
    积分:1
  • 电力用户用电信息采集系统通信协议集合加测试工具
    关于电力行业的那些通信协议(376.1/376.2/376.3/645/698)
    2020-12-05下载
    积分:1
  • Amesim_液压仿真学习
    Amesim_液压仿真学习,这些资料网上一般不好找
    2020-12-07下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载