登录
首页 » Others » 绘制在不同温度下光伏电池的输出特性曲线的MATLAB程序

绘制在不同温度下光伏电池的输出特性曲线的MATLAB程序

于 2020-11-30 发布
0 198
下载积分: 1 下载次数: 10

代码说明:

绘制在不同温度下光伏电池的输出特性曲线的MATLAB程序

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 轨迹数据集网站
    最近在研究轨迹数据方面的课题,特意收集大量关于轨迹方面的网站,里面包括出租车等方面的数据集。
    2020-06-28下载
    积分:1
  • 基于模糊控制的AGV小车轨迹跟踪
    运用matlab模糊控制箱实现AGV小车轨迹跟踪,代码齐全,simulink模型能够直接运行,运行前请先把fis文件读到工作空间。
    2021-05-06下载
    积分:1
  • Java面试笔试大汇总(最全+详细答案)
    搜集的 Java面试笔试题,设置最低积分,备份加供诸位道兄下载,没积分的私我是的内部类,其代码如下所小简单的说,如果整型字面量的值在到之间,那么不会新的对象,而是直接引用常量池中的对象,所以上面的面试题中的结果是而的结果是提醒:越是貌似简单的面试题其中的玄机就越多,需要血试者有相当深厚的功力。和的区别答:运算符有两种用法:按位与;逻辑与ε运算符是短路与运算。逻辑与跟短路与的差别是非常巨人的,虽然二者都要求运算符左右两端的布尔值都是整个表达式的值才是之所以称为短路运算是因为,如果左边的表达式的值是右边的表达式会被直接短路掉,不会进行运算。很多时候我们可能都需要用而不是,例如在验证用户登录时判定用户名不是而且不是空字符串,应当写为:二者的顺序不能交换,更不能用运算符,因为第一个条件如果不成立,根本不能进行字符串的比较,否则会产生异常。注意:逻辑或运算符()和短路或运算符()的差別也是如此。补充:如果你熟悉那你可能更能感受到短路运算的强大,想成为的高手就先从玩转短路运算开始吧3114解释内存中的栈堆和静态区的用法。答:通常我们定义一个基本数据类型的变量,一个对象的引用,还有就是函数调用的现场保存都使用内存中的栈空间;而通过关键字和构造器创建的对象放在堆空间;程序中的字面量()如直接书写的和常量都是放在静杰区中。栈空间操作起来最快但是栈很小,通常大量的对象都是放在堆空间,理论上整个内存没有被其他进程使用的空间甚至硬盘上的虚拟内存都可以被当成堆空间来使用。上面的语句中变量放在栈上,用创建出来的字符串对象放在堆上,而这个字面量放在静态区。补充:较新版本的(从的某个更新开始)中使用了一项叫逃逸分析的技术,可以将一些局部对象放在栈上以提升对象的操作性能等于多少?等于多少?答的返回值是的返回值是。四舍五入的原理是在参数上加然后进行下取整。是否能作用在上,是否能作用在上,是否能作用在上答:在以前,中只能是从开始中引入了枚举类型,也可以是类型,从开始,还可以是字符串(),但是长整型()在目前所有的版本中都是不可以的。、用最有效率的方法计算乘以?答:(左移位相当于乘以的次方,右移位相当于除以的次方)。补充:我们为编写的类重写方法时,可能会看到如下所示的代码,其实我们不太理解为什么要使用这样的乘法运算来产生哈希码(散列码),而且为什么这个数是个素数,为什么通常选择这个数?前两个问题的答案你可以自己百度一下,选择是因为可以用移位和减法运算来代替乘法,从而得到更好的性能。说到这里你可能凵经想到了:等价于左移位相当于乘以的次方再诚去自身就相当于乘以,现在的都能自动完成这个优化4/114、数组有没有方法?有没有方法?答:数组没有方法,有的属性。有方法中,获得字符串的长度是通过属性得到的,这一点容易和混淆。在中,如何跳出当前的多重嵌套循环?答:在最外层循环前加个标记如,然后用可以跳出多重循环。(中支持带标签的和语句,作用有点类似于和中的语句,但是就像要避免使用一样,应该避免使用带标签的和,因为它不会让你的程序变得更优雅,很多时候甚至有相反的作用,所以这种语法其实不知道更好)、构造器()是否可被重写()?答:构造器不能继承,因此不能被重写,但可以被重载。、两个对象值相同但却可有不同的这句话对不对答:不对,如果两个对象和满足,它们的哈希码(相同对于方法和方法是这样规定的:如果两个对象相同(方法返回,那么它们的值一定要相同:如果两个对象的它们并不一定相同。当然,你未必要按照要求去做,但是如果你违背了上述原则就么发在使用容器时,相同的对象可以出现在集合中,同时增加新元素的效率会大大下降(对于使用哈希存储的系统,如果哈希码频繁的冲突将会造成存取性能急剧下降)补充:米于和方法,很多程序都知道,但很多人也就是仅仅知道而己,在的大作《》(很多软件公司,《《编程思想》以及《重构:改善既有代码质量》是程序员必看书籍,如果你还没看过,那就赶紧去亚马逊买一本吧)中是这样介绍方法的:首先方法必须满足自反性(必须返回)、对称性(返回时也必须返回)、传递性(和都返回时,也必须返回)和致性(当和引用的对象信息没有被修改时,多次调用应该得到同样的返回值),而且对于任何非值的引用,必须返回实现高质量的方法的诀窍包括:使用操作符检查参数是否为这个对象的引用;5114使用操作符检查参数是否为正确的类型;对于类中的关键属性,检查参数传入对象的属性是否与之相匹配;编写完方法后,问自己它是否满足对称性、传递性、一致性;重写时总是要重写;不要将方法参数中的对象替换为其他的类型,在重写时不要忘掉注解。、是否可以继承类?答:类是类,不可以被继承。补充:继承本身就是一个错误的行为,对类型最好的重用方式是关联关系)和依赖关系()而不是继承关系()、当一个对象被当作参数传递到一个方法后,此方法可改变这个对象的属性,并可返回变化后的结果,那么这里到底是值传递还是引用传递?答:是值传递。语言的方法调用只支持参数的值传递。当一个对象实例作为一个参数被传递到方法中时,参数的值訫是对该对象的引用。对象的属性可以在被调用过程中被改变,但对对象引用的改变是不会影响到调用者的。和中可以通过传引用或传输出参数来改变传入的参数的值。在中可以编写如下所示的代码,但是在中却做不到。说明:中没有传引用实在是非常的不方便,这点在中仍然没有得到改进,正是如此在编写的代码中才会出现大量的类(将需要通过方法调用修改的引用置类中,再将对象传入方法),这样的做法只会让代码变得臃肿,尤其是让从和转型为程序员的开发者无法容。和的区别?答:平台提供了两种类型的字符串和,它们可以储存和操作字符串。其中是只读字符串,也就意味着引用的字符串内容是不能被改变的。而类表小的字符串对象可以直接进行修改是中引入的,它和的方法完全相同,区别在于它是在单线程环境下使用的,因为它的所有方面都没有被修饰,因此它的效率也比要高。面试题什么情况下用运算符进行字符串连接比调用对象的方法连接字符串性能更好?如果是少量的字符串拼接,可以用,如果是大量的还是用吧是线程安全的是线程不安全的,很6114明显,的系统开销要大,所以如果我们只有个单线程,考虑速度的话更好。那为什么我们很少见到呢?原因很简单,因为我们有时候很难确定我们创建的系统会不会是多线程的,如果考虑到以后扩展的可能性,则更难确定,所以我们更愿意使用因为它是线程安全的,不用担心以后扩展。面试题请说出下面程序的输出。补充:解答上面的面试题需要清楚两点对象的方法会得到字符串对象在常量池中对应的版本的引用(如果常量池中有一个字符串与对象的结果是),如果常量池中没有对应的字符串,则该字符串将被添加到常量池中,然后返回常量池中字符串的引用;字符串的操作其本质是创建了对象进行操作,然后将拼接后的对象用方法处理成对象,这一点可以用命令获得文件对应的字节码指令就可以看出来。方法就是把该对象放进常量池。、重载()和重写()的区别。重载的方法能否根据返回类型进行区分?答:方法的重载和重写都是实现多态的方式,区别在于前者实现的是编译时的多态性,而后者实现的是运行时的多态性。重载发生在一个类中,同名的方法如果有不同的参数列表(参数类型不同、参数个数不同或者二者都不同)则视为重载;重写发生在了类与父类之间,重写要求子类被重写方法与父类被重写方法有相同的返回类型,比父类被重写方法更好访问,不能比父类被重写方法声明更多的异常(里氏代换原则)。重载对返回类型没有特殊的要求面试题:华为的面试题中曾经问过这样一个问题为什么不能根据返回类型来区分重载,快说出你的答案吧!返回类型不同不构成重载,重载的机制是参数列表不同,即参数的类型,个数,排列顺序。、描述·下加载文件的原理机制?答中类的装载是由类加载器()和它的子类来实现的,中的类加载器是一个重要的运行时系统组件,它负责在运行时查找和装入类文件中的类。由于的跨平台性,经过编译的源程序并不是·个可执行程序,而是个或多个类文件。当程序需要使用某个类时,会确保这个类已经被加载、连接(验证、准备和解析)和初始化。类的加载是指把类的文件中的数据读入到内存中,通常是创建一个字节数组读入文件,然后产生与所加载类对应的对象。加载完成后,对象还不完整,所以此时的类还不可用。当类被加载后就进入连接阶段,这一阶段包括验证7114准备(为静态变量分配内存并设置默认的初始值)和解析(将符号引用替换为直接引用)三个步骤。最后对类进行初始化,包括:如果类存在直接的父类并且这个类还没有被初始化,那么就先初始化父类;如果类中存在初始化语句,就依次执行这些初始化语类的加载是由类加载器完成的,类加载器包括:根加载器()、扩展加载器)、系统加载器()和用户自定义类加载器(的子类)。从)开始,类加载过程采取了父亲委托机制()。更好的保证了平台的安全性,在该机制中自带的是根加载器,其他的加载器都有且仅有一个父类加载器。类的加载首先请求父类加载器加载,父类加载器无能为力时才由其子类加载器自行加载不会向程序提供对的引用。下面是关于几个类加载器的说明:般用本地代码实现,负责加载基础核心类库();从系统属性所指定的目录中加载类库,它的父加载器是又叫应用类加载器,其父类是环境变量或者系统属性所指公应它是应用最广泛的关加载器。它从目录中记载类,是用户自定义加载器的默认父加载器。型变量中能不能存贮一个中文汉字,为什么?答:类型可以存储一个中文汉字,因为中使用的编码是不选择任何特定的编码,直接使用字符在字符集中的编号,这是统一的唯一方法),一个类型占个字节(比特),所以放一个中文是没问题的补充:使用意味着字符在内部和外部有不同的表现形式,在内部都是当这个字符被从内部转移到外部时(例如存入文件系统中),需要进行编码转换。所以中有字节流和字符流,以及在字符流和字节流之间进行转换的转换流,和,这两个类是字节流和字符流之间的适配器类,承担了编码转换的任务;对于程序员来说,要完成这样的编码转换恐怕要依赖于(联合体共用体)共享内存的特征米实现了。、抽象类和接口()有什么异同?答:抽象类和接口都不能够实例化,但可以定义抽象类和接口类型的引用。一个类如果继承」某个抽象类或者实现了某个接口都需要对其中的抽象方法全部进行实现,否则该类仍然需要被声明为抽象类。接口比抽象类更加抽象,因为抽象类中可以定义构造器,可以有抽象方法和具体方法,而接口中不能定义构造器而且其中的方法全部都是抽象方法。抽象类中的成员可以是默认的,而接口中的成员全都是的抽象类中可以定义成员变量,而接∏中定义的成员变量实际上都是常量。有抽象方法的类必须被声明为抽象类,而抽象类未必要有抽象方法、静态嵌套类和内部类()的不同?是被声明为静态)的内部类,它可以不依赖于外部类实例被实例化。而通常的内部类需要在外部类实例化后才能实例化,其语法看起来挺诡异的,如下所示。扑克类(一副扑克)骆昊黑桃红桃草花方块8114构造器洗牌(随机乱序)发牌发牌的位置下片类(一张扑克)内部类骆昊花色点数9114测试代码:汏牌发第一张牌对于非静态内部类只有通过其外部类对象才能创建对象红心自己创建一张牌洗牌后的第一张打印红心面试题下面的代码哪些地方公产生编译错误?注意中非静态内部类对象的创建要依赖其外部类对象,上面的面试题中和方法都是静态方法,静态方法中没有,也就是说没有所谓的外部类对象,因此无法创建内部类对象,如果要在静态方法中创建内部类对象,可以这样做:、中会存在内存泄漏吗,请简单描述答:理论上因为有垃圾回收机制()不会存在内存泄露问题(这也是被广泛使用于服务器端编程的一个重要原因);然而在实际开发中,可能会存在无用但可达的对象,这些对象不能被回收,因此也会导致内存泄露的发生。例如的10/114
    2020-06-20下载
    积分:1
  • 迪杰斯特拉算法求任意两点间最短路径 无向图.rar
    【实例简介】可以计算任意两个指定点之间最短距离 无向图 节点编号为0到nodenum-1 节点容量可以自己修改 起点和终点任意 只要不超过以上范围
    2021-12-04 00:45:14下载
    积分:1
  • 视频关键帧提取代码
    里面含有关键帧提取的代码,还有人脸检测等代码,是vs+opencv实现的
    2020-12-05下载
    积分:1
  • feature extraction(深度学习,特征提取)
    feature extraction(深度学习,特征提取)
    2020-04-22下载
    积分:1
  • MicroElectronic Circuit Design
    微电子电路设计第五版,Richard C. Jaeger, Traveis N. Blalock编著。FIETH EDITIONMICROELECTRONICHM-M- CIRCUIT DESIGNRICHARD C. JAEGERAuburn UniversityTRAVIS N. BLALOCKUniversity of VirginiaMcGrawEducationGrawEducationMICROELECTRONIC CIRCUIT DESIGN. FIFTH EDITIOPublished by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121 CopyrightC 2016 by McGraw-Hill EducationAll rights reserved. Printed in the United States of America. Previous editions 2011, 2008, and 2004. No part of thispublication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system,without the prior written consent of McGraw-Hill Education, including, but not limited to, in any network or otherelectronic storage or transmission, or broadcast for distance learninSome ancillaries, including electronic and print components, may not be available to customers outside the United StatesThis book is printed on acid-free pape1234567890DOw/DOw1098765ISBN978-0-07-352960-8MHID0-07-352960-5sident Products markets Kurt LVice President, General Manager, Products Markets: Marty Langece President, Content Design Delivery: Kimberly Meriwether DavidManaging director: Thomas TimpGlobal Publisher Raghu srinivasanDirector. Prodrelopment: RoDirector, Digital Content Development: Thomas Scaife, Ph DProduct develoVincent brashMarketing manager: Nick Mc faddenDirector, Content Design Delivery: Linda avenariusProgram meSchillingContent Project Managers: Jane Mohr, Tammy Juran, and Sandra M. SchneeBuyer: Jennifer PickelDesign: Studio Montage, St Louis, MOContent Licensing Specialist: DeAnna DausenerCompositor: MPS LimitedPrinter.R. DonnellAll credits appearing on page or at the end of the book are considered to be an extension of the copyright pageLibrary of Congress Cataloging-in-Publication DataJaeger. Richard cMicroelectronic circuit design/Richard C. Jaeger, Auburn University,Travis N. Blalock, University of Virginia. --Fifth editionpages cmIncludes bibliographical references and indexISBN978-0-07-352960-8(alk. paper)-ISBN0-07-338045-8(alk. paper)d 1. Integrated circuits--Design and construction. 2. Semiconductors--Design and construction. 3. Electronic circuitesign. I. Blalock, Travis N. Il. TitleTK7874.J3332015621.3815-dc232014040020The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website does not indicatean endorsement by the authors or McGraw-Hill Education, and McGraw-Hill Education does not guarantee the accuracy ofthe information presented at these siteswww.mhhe.comTOTo Joan, my loving wife and life long partnerRichard C. JaegerIn memory of my father, Professor Theron vaughnBlalock, an inspiration to me and to the countlessstudents whom he mentored both in electronicdesign and in life.Travis n blalockBRIEF CONTENTSPreface xxChapter-by-Chapter Summary XXV12 Operational Amplifier Applications 685PART ONE13 Small-Signal Modeling and LinearSOLID-STATE ELECTRONICS AND DEVICESAmplification 77014 Single-Transistor Amplifiers 8411 Introduction to Electronics 32 Solid-State Electronics 4115 Differential Amplifiers and Operational Amplifier3 Solid-state Diodes and Diode circuits 72Design 9524 Field-Effect Transistors 14416 Analog Integrated Circuit Design Techniques 10315 Bipolar Junction Transistors 21517 Amplifier Frequency Response 111318 Transistor Feedback Amplifiers andPART TWOOscillators 1217DIGITAL ELECTRONICSAPPENDICES6 Introduction to Digital Electronics 2837 Complementary MOS (CMOS) Logic Design 359A Standard Discrete Component Values 12918 MOS Memory Circuits 414B Solid-State Device Models and sPIce simulationParameters 12949 Bipolar Logic Circuits 455C TWo-Port Review 1299PART THREIndex 1303ANALOG ELECTRONICS10 Analog Systems and Ideal OperationalAmplifiers 51711 Nonideal Operational Amplifiers and FeedbackAmplifier Stability 587CONTENTSPreface xxCHAPTER 2Chapter-by-Chapter Summary XXVSOLID-STATE ELECTRONICS 41PART ONE2.1 Solid-State Electronic materials 432.2 Covalent bond model 44SOLID-STATE ELECTRONICS2.3 Drift Currents and mobility inAND DEVICES 1Semiconductors 472.3.1 Drift Currents 47CHAPTER 12.3.2 Mobility 48INTRODUCTION TO ELECTRONICS 32.3.3 Velocity Saturation 482.4 Resistivity of Intrinsic Silicon 491.1 A Brief History of Electronics: From2.5 Impurities in Semiconductors 50Vacuum Tubes to Giga-Scale Integration 52.5.1 Donor Impurities in silicon 511.2 Classification of Electronic Signals 82.5.2 Acceptor Impurities in Silicon 511.2.1 Digital signals 92.6 Electron and hole concentrations in1.2.2 Analog Signals 9Doped semiconductors 511.2.3 A/D and D/A Converters--Bridging2.6.1Type Material (ND >NA)52the analog and Digital2.6.2 p-Type Material (N,A>ND)53Domains 102.7 Mobility and Resistivity in Doped1.3 Notational conventions 12Semiconductors 541.4 Problem-Solving Approach 132.8 Diffusion currents 581.5 Important Concepts from Circuit2. 9 Total Current 59Theory 152.10 Energy Band Model 601.5.1 Voltage and current Division 152.10.1 Electron-Hole pair generation in1.5.2 Thevenin and norton circuitan intrinsic semiconductor 60Representations 162.10.2 Energy Band Model for a Doped1.6 Frequency Spectrum of ElectronicSemiconductor 61Signals 212.10.3 Compensated semiconductors 611.7 Amplifiers 222.11 Overview of Integrated circuit1.7.1 Ideal operational amplifiers 23Fabrication 631.7.2 Amplifier Frequency Response 25Summary 661.8 Element Variations in Circuit Design 26Key Terms 671.8.1 Mathematical modeling ofReference 68Tolerances 26Additional Reading 681.8.2 Worst-Case Analysis 27Problems 688.3 Monte Carlo analysis 291.8.4 Temperature Coefficients 32CHAPTER 31.9 Numeric Precision 34SOLID-STATE DIODES AND DIODE CIRCUITS 72Summary 34Key Terms 353.1 The pn Junction Diode 73References 363.1.1 pn Junction Electrostatics 73Additional Reading 363.1.2 nternal diode currents 77Problems 363.2 The i-v Characteristics of the diode 78VIllContents3.3 The Diode Equation: A Mathematica3.15 Full-Wave Bridge Rectification 123Model for the diode 803.16 Rectifier Comparison and Design3.4 Diode Characteristics under reverse, ZeroTradeoffs 124and forward bias 833.17 Dynamic Switching Behavior of the Diode 1283.4.1 Reverse bias 833.18 Photo diodes, solar cells, and3. 4.2 Zero bias 83Light-Emitting Diodes 1293.4.3 Forward Bias 843.18.1 Photo diodes and3.5 Diode Temperature Coefficient 86Photodetectors 1293.6 Diodes under reverse bias 863.18.2 Power Generation from Solar Cells 1303.6.1 Saturation Current in real3.18. 3 Light-Emitting Diodes(LEDs)13Diodes 87Summary 1323.6.2 Reverse Breakdown 89Key Terms 1333.6.3 Diode model for the breakdownReference 134Region 90Additional Reading 1343.7 pn Junction Capacitance 90Problems 1343.7.1 Reverse bias 903.7.2 Forward Bias 91CHAPTER 43.8 Schottky Barrier Diode 933.9 Diode SPICE Model and layout 93FIELD-EFFECT TRANSISTORS 1443.9.1 Diode Layout 944.1 Characteristics of the MOS Capacitor 1453.10 Diode Circuit Analysis 954.1.1 Accumulation Region 1463.10.1 Load-Line Analysis 964.1.2 Depletion Region 1473.10.2 Analysis Using the Mathematical4.1.3 Inversion Region 147Model for the diode 974.2 The nmos transistor 1473.10.3 The Ideal diode model 1014.2.1 Qualitative i-v Behavior of the3.10.4 Constant Voltage Drop Model 103NMOS Transistor 1483.10.5 Model Comparison and4.2.2 Triode Region Characteristics ofDiscussion 104the nmos transistor 1493.11 Multiple-Diode Circuits 1054.2.3 On Resistance 1523.12 Analysis of Diodes Operating in the4.2.4 Transconductance 153Breakdown Region 1084.2.5 Saturation of the i-v3.12.1 Load-Line Analysis 108Characteristics 1543.12.2 Analysis with the Piecewise4.2.6 Mathematical model in theLinear model 108Saturation (Pinch-off)3.12.3 Voltage regulation 109Region 1553.12.4 Analysis Including Zener4.2.7 Transconductance in saturation 156Resistance 1104.2.8 Channel-Length Modulation 1563.12.5 Line and Load Regulation 1114.2.9 Transfer characteristics and3.13 Half-Wave Rectifier Circuits 112Depletion-Mode MosFETs 1573.13.1 Half-Wave Rectifier with resistor4.2.10 Body Effect or SubstrateLoad 112Sensitivity 1593.13.2 Rectifier Filter Capacitor 1134.3 PMOS Transistors 1603.13.3 Half-Wave Rectifier with rc load 1144.4 MOSFET Circuit Symbols 1623. 13.4 Ripple Voltage and Conduction4.5 Capacitances in MOS Transistors 165Interval 1154.5.1 NMOs Transistor Capacitances in3.13.5 Diode Current 117the Triode region 1653.13.6 Surge Current 1194.5.2 Capacitances in the Saturation3.13.7 Peak-Inverse-Voltage(PlV)Rating 119Region 1663.13.8 Diode Power Dissipation 1194.5.3 Capacitances in Cutoff 1663.13.9 Half-Wave Rectifier with Negative4.6 MOSFET Modeling in SPICE 167Output Voltage 1204.7 MOS Transistor Scaling 1683.14 Full-Wave Rectifier Circuits 1224.7.1 Drain Current 1693. 14.1 Full-Wave Rectifier with Negative4.7.2 Gate Capacitance 169Output Voltage 1234.7.3 Circuit and power densities 169ContentsIX4.7.4 Power-Delay Product 1705.3 The pnp Transistor 2234.7.5 Cutoff Frequency 1705.4 Equivalent Circuit Representations for the4.7.6 High Field Limitations 171Transport Models 2254.7.7 The unified mos transistor model5.5 The i-v Characteristics of the bipolarIncluding High Field Limitations 172Transistor 2264.7.8 Subthreshold conduction 1735.5.1 Output Characteristics 2264.8 MOs Transistor Fabrication and layout5.5.2 Transfer characteristics 227Design Rules 1745.6 The Operating Regions of the Bipolar4.8.1 Minimum Feature size andTransistor 227Alignment Tolerance 1745.7 Transport Model Simplifications 2284.8.2 Mos Transistor Layout 1745.7.1 Simplified Model for the Cutoff4.9 Biasing the NMOS Field-EffectRegion 229Transistor 1785.7.2 Model Simplifications for the4.9.1 Why Do We Need Bias? 178Forward-Active Region 2314.9.2 Four-Resistor Biasing 1805.7.3 Diodes in Bipolar Integrated4.9.3 Constant Gate-Source VoltageCircuits 237Bias 1845.7.4 Simplified Model for the4.9.4 Graphical analysis for theReverse-Active Region 238Q-Point 1845.7.5 Modeling Operation in the4.9.5 Analysis Including Body Effect 184Saturation Region 2404.9.6 Analysis Using the Unified5.8 Nonideal Behavior of the bipolarModel 187Transistor 2434.10 Biasing the PMos Field-Effect Transistor 1885.8.1 Junction Breakdown Voltages 2444.11 The junction Field-Effect Transistor5.8.2 Minority-Carrier Transport in theUFET190Base Region 2444.11.1 The JFET With Bias Applied 195.8.3 Base Transit time 2454.11.2 JFET Channel with Drain-Source5.8.4 Diffusion Capacitance 247Bias 1935.8.5 Frequency Dependence of the4.11.3 n-Channel jfet i-v Characteristics 193Common-Emitter current gain 2484.11.4 The p-Channel JFET 1955.8.6 The Early Effect and Early4.11.5 Circuit Symbols and JFET ModelVoltage 248Summary 1955.8.7 Modeling the Early Effect 2494.11.6 JFET Capacitances 1965.8.8 Origin of the Early Effect 2494.12 JFET Modeling in Spice 1965.9 Transconductance 2504.13 Biasing the JFET and Depletion-Mode5.10 Bipolar Technology and sPiCe Model 251MOSFET 1975.10.1 Qualitative Description 251Summary 2005.10.2 SPICE Model Equations 252Key Terms 2025.10.3 High-Performance BipolarReferences 202Transistors 253Problems 2035.11 Practical bias circuits for the bjt 2545.11.1 Four-Resistor bias network 256CHAPTER 55.11.2 Design Objectives for theBIPOLAR JUNCTION TRANSISTORS 215Four-Resistor bias network 2585.11.3 terative Analysis of the5.1 Physical Structure of the BipolarFour-Resistor bias circuit 262Transistor 2165.12 Tolerances in bias circuits 2625.2 The Transport Model for the npn5. 12.1 Worst-Case Analysis 263Transistor 2175. 12.2 Monte Carlo Analysis 2655.2.1 Forward Characteristics 218Summary 2685.2.2 Reverse Characteristics 220Key Terms 2705.2.3 The Complete Transport ModelReferences 270Equations for Arbitrary BiasProblems 271Conditions 221
    2020-12-10下载
    积分:1
  • msp430g2553测频
    msp430g2553测频的程序,对初学者有一定的帮助,适合刚刚接触的同学
    2020-11-30下载
    积分:1
  • 基于小波变换的matlab图像处理
    基于小波变换的matlab图像处理程序,可用于图像预处理,人脸识别,特整提取等功能
    2020-12-09下载
    积分:1
  • 基于Matlab_Simulink的航天器姿态动力学与控制仿真框架
    基于Matlab_Simulink的航天器姿态动力学与控制仿真框架,很实用
    2020-11-28下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载