MPU-6050 六轴传感器数据手册(中文)
MPU-6050 六轴传感器数据手册(中文)T。pvewTop View88昌翼24123122212019CLKIN18 GNDCLKIN 118 GNDNc 217|NcNC 2Nc6NCNc 316NCMPU-6000MPU-6050Nc16 NCNc514NCAUX DA613VDDAUX_DA613VDDmoQB5B召azQFN PackageQFN Package24-pin, 4mm x 4mm xo9mm24-pin, 4mm x 4mm x 0.9mm+2+7.2典型应用GNDCr 10n2巴2222l2巴2凹2CLKINMPU600回而MPU-6050 sAX CLAUX CLGNDClVLOGIC△NDGNDTypical Operating Circuits73所用电容规格器件标签规格数量校准滤波电容(Pm10)C1陶瓷,Ⅹ7R,0.1uF±10%,2VVDD旁路电容(Pin13)C2陶瓷,Ⅹ7R,0.1uF±10%,4∨电荷泵电容(Pin20)C3陶瓷,Ⅹ7R,10UF±10%,50VLOGC旁路电容(Pin8)C4陶瓷,X7R,10uF±10%,4V7.4上电过程建议Power-Up Sequencing1. TVDDR is VDD rise time: Time for vdd to risefrom 10% to 90% of its final valueVDDR2. TVDDR is $100msec3. tvr is VLOGIC rise time: Time forVLOGIC to rise from 10% to 90% of its finalVDDvaltlVR4. TVGR is S3msec90%5. TvG-VDD is the delay from the start of VDDramp to the start of VLOGIC riseVLOGIC10%6. TVLGVDD is 20: VLOGIC amplitude mustalways be sVDD amplitude7. VDD and VLOGIC must be monotonicramps1.VLOG|C振幅必须sVDD振幅2.VDD上升时间(TvDR)为实际值的10%到90%之间3.VDD上升时间(TvDR)≤100ms4.ⅥLOGC上升时间( TVLGR)为实际值的10%到90%之间5. VLOGIO上爪时间(TvcR)≤3ms6. TVG-VDD为从VDD上升沿到LOG|C上升沿的时间7.VDD和ⅥLOGC必须是单调边沿7.5系统结构图CLKINCLKOUTacknowledgSCL FROMMASTER8clock pulse forSTARTacknowledgementconditionAcknowledge on the ic bus通信开始标志(S)发出后,主设备会传送一个7位的Save地址,并且后面跟着一个第8位,称为Read/ Write位。R^W位表小主改备是在接受从改备的数据还是在向其写数据。然后,主设备释放SDA线,等待从设各的应答信号(ACK)。每个字节的传输都要跟随有一个应答位。应答产生时,从设备将SDA线拉低并且在SCL为晑电平时保持低。数据传输总是以停止标志(P)结束,然后释放通信线路。然而,主设备也可以产生重复的开始信号去操作另一台从设备,而不发出结束标志。综上可知,所有的SDA信号变化都要在SCL时钟为低电平时进行,除了廾始和结束标志。SDA91-7891-7START ADDRESS RN ACKDATAACKDATAACK STOPconditionComplete IC Data Transfer如果要写MPU-60X0寄存器,主设备除了发出开始标志(S)和地址位,还要加一个R∧W位,0为写,1为读。在第9个时钟周期(高电平时),MPU-60X0产生应答信号。然后主设备开始传送奇行器地址(RA),接到应答后,开始传送寄存器数据,然后仍然要有应答信号,依次类推。单字节写入时序Master S AD+WRADATASlaveACKACKACK连续写入时序
- 2020-12-05下载
- 积分:1
EM算法详细例子及推导
EM算法详细例子及推导数θ),那么对于上面的实验,我们可以计算出他们出现我们观察到的结果即0=(5,9,.8,4,7,20=(B,A,A,B,4)的概率函数P(X=x10),2z)⑨)就叫做θ的似然函数。我们将它对θ求偏导并令偏导数为0,就可以得到如的结果P(X=x0,=20))=(;P(z=A)3(1-P(z=A)2C10(1-64)10A(1-6C104(1-0(1-6B)C106n(1-6我们将这个问题稍微改变一下,我们将我们所观察到的结果修改一…下我们现在只知道每次试验有几次投掷出正面,但是不知道每次试验投掷的是哪个硬币,也就是说我们只知道表中第一列和第三列。这个时候我们就称Z为隐藏变量( Hidden variable),X称为观察变量( Observed variable)。这个时候再来估计参数θ4和θB,就没有那么多数据可供使用了,这个时侯的估计叫做不完整数据的参数估计。如果我们这个时候冇某种方法(比如,正确的猜到每次投掷硬币是A还是B),这样的话我们就可以将这个不完整的数据估计变为完整数据估计当然我们如果没有方法来获得更多的数据的话,那么下面提供了一种在这种不完整数据的情况下来估计参数θ的方法。我们用迭代的方式来进行:(1)我们先赋给θ一个初始值,这个值不管是经验也好猜的也好,反正我们给它一个初始值。在实际使用中往往这个初始值是有其他算法的结果给岀的,当然随机给他分配一个符合定义域的值也可以。这里我们就给定64=0.7,6B=0.4(2)然后我们根据这个来判断或者猜测每次投掷更像是哪枚硬币投掷的结果。比如对于试验1,如果投掷的是Δ,那么出现5个止面的概率为C10×0.75×(1-07)5≈0.1029:;如果投掷的是B,出现5个正面的概率为C105×0.43×(1-0.4)5≈0.2007;基于试验1的试验结果,可以判断这个试验投掷的是使币A的概率为0.10290.10290.2007)-0.389是B的概率为02007(0.1029+0.2007)06611。因此这个结果更可能是投掷B出现的结果(3)假设上一步猜测的结果为B,A,A,B,A,那么恨据这个猜测,可以像完整数据的参数仙计一样(公式2重新计算的值这样一次一次的迭代2-3步骤直到收敛,我们就得到了θ的估计。现在你可能有疑问,这个方法靠谱么?事实证明,它确实是靠谱的。期望最大化算法就是在这个想法上改进的。它在估计每次投掷的硬币的吋候,并不要确定住这次就是硬币A或者B,它计算岀来这次投掷的硬币是A的概率和是B的概率;然后在用这个概率(或者叫做Z的分布)来计算似然函数。期望最大化算法步骤总结如下:F步骤先利用旧的参数值〃计算隐藏变量Z的(条件)分布P(万=2|Xn2),然后计算logP(,X=m)的期望B(o(2,X=x)=∑∑P(Z=别X=)P(Z=X=x)其中θ是当前的值,而θ是上一次迭代得到的值。公式中已经只剩下θ一个变量了,θ是一个确定的值,这个公式或者函数常常叫做Q函数,用Q(6,6)来表示。M步骤极大化Q,往往这一步是求导,得到由旧的θ值′米计算新的θ值的公式aQ总结一下,期望最大化算法就是先根据参数初值估计隐藏变量的分布,然后根据隐藏变量的分布来计算观察变量的似然函数,估计参数的值。前者通常称为E步骤,后者称为M步骤3数学基础首先来明确一下我们的目标:我们的目标是在观察变量X和给定观察样本:1,x2,…,rn的情況下,极大化对数似然函数(=>nP(X2=x;)(5)其中只包含观察变量的概率密度函数P(X2=2)=∑P(X=n,=)这里因为参数θ的写法与条件概率的写法相同,因此将参数θ写到下标以更明确的表述其中Z为隐藏随机变量,{}是Z的所有可能的取值。那么6)=∑h∑P(X=x,z=2)∑h∑。Px=x这里我们引入了一组参数(不要怕多,我们后面会处理掉它的)a,它满足可能的;,0;∈(0,1和∑;a=1到这里,先介绍一个凸函数的性质,或者叫做凸函数的定义。∫(x)为凸函数,=1,2,…,m,A∈[0,1∑1A对∫(x)定义域中的任意n个m1,x2,…,xn有f(∑Aa)≤∑mf(xr)i=1对于严格凸函数,上面的等号只有在x1=2xn的时候成立。关于凸函数的其他性质不再赘述。对数函数是一个严格凸数。因而我们可以有下面这个结果0)=∑hn∑≥∑∑ah(X=2n,2=C现在我们根据等号成立的条件来确定a;即P(X=x,Z=2)C(10)其中c是一个与j无关的常数。因为∑,=1,稍作变换就可以得到P(X;=x;)现在来解释下我们得到了什么。c;就是Z=2;在X=x;下的条件概率戌者后验概率。求α就是求隐藏随机变量Z的条件分布。总结一下目前得到的公式就是)-∑∑P(Xi=i,Z(12)直接就极大值比较难求,EM算法就是按照下面这个过程来的。它就是大名鼎鼎的琴生( Jensen)不等式(1)根据上一步的θ来计算α,即隐藏变量的条件分布(2)极大化似然函数来得到当前的的估计3.1极大似然估计好吧,我觉得还是再说说极大似然估计吧。给定一个概率分布D,假设其概率密度函数为f,其中f带有一组参数6。为了估计这组参数6,我们可以从这个分布中抽出一个具有n个采样值的X1,X2,…,Yn,那么这个就是n个(假设独立)同分布随机变量,他们分别有取值x1,x2…,xn,那么我们就可以计算出出现这样一组观察值的概率密度为lI f(ai)(13)对于f是离散的情况,就计算出现这组观察值的概率10)注意,这个函数中是含有参数0的。0的极大似然估计就是求让上面似然函数取极大值的时候的参数O值。般来说,会将上面那个似然函数取自然对数,这样往往可以简化计算。记住,这样仅仅是为了简化计算。取了自然对数之后的函数叫做对数似然函数。ln()=∑lnf(n)因为对数是一个严格单调递增的凹函数,所以对似然函数取极人值与对对数似然函数取极大值是等价的。3取了对数之后还可以跟信息熵等概念联系起来4关于凸函数有很多种说法,上凸函数和下凸函数,凸函数和凹函数等等,这里指的是二阶导数大」(等」)0的一类函数,而凹函数是其相反数为凸数的一类函数32期望最大化算法收敛性如何保证算法收敛呢?我们只用证明l(04+1)≥1(00)就可以了l(0(t11)∑∑(+1)1PX=x;2=2)(+(t+1∑∑nf(X=x;,z=z;)(+1)(t)o(tn /(r=i,Z=2(t)≥∑∑ahn(t)7(0其中第一个人于等于号是因为只有当a取值合适(琴生不等式等号成立条件)的时候才有等号成立,第二个人于等于号正是M步骤的操作所致。这样我们就知道l(θ)是随着迭代次数的增加越来越人的,收敛条件是值不再变化或者变化幅度很小。4应用举例4.1参数估计很直接的应用就是参数估计,上面举的例子就是参数估计42聚类但是如果估计的参数可以表明类别的话,比如某个参数表示某个样本是否属于某个集合。这样的话其实聚类问题也就可以归结为参数估计问题。References[]最大似然估计[oNline].Availablehttp://zh.wikipediaorg/wiki.%E6%9c%80%E5%A4%A7%E4%BC%BC%E7%84%B6%E4%BC%B0%E8%AE%A1[2] Ceppellini, r, Siniscalco, M.& Smith, C.A. Ann. Hum. Genet. 20, 97-115(1955)3 Hartley, H. Biometrics 14, 174-194(1958)4 Baum, L.E., Petric, T, Soulcs, G.& Weiss, N. Ann. Math. Stat 41, 164-171(1970)[ 5] Dempster, A P, Laird, N.M., Rubin, D B.(1977). "Maximum Likelihoodfrom Incomplete Data via the em algorithm. Journal of the royal statis-tical Society Series B(Methodological)39(1): 1-38. JSTOR 2984875 MR0501537[6]Whatistheexpectationmaximizationalgorithm[oNline].Avaiable:http//ai. stanford. edu/-chuongdo/papers/em tutorial pdf[7TheEmAlgorithmOnline.Availablehttp://www.cnblogs.com,jerrylead/ archive/2011/04/06/2006936html
- 2020-12-07下载
- 积分:1
FLUENT经典算例合集7个
案例分析的电子书《数值计算与工程仿真》专刊一 FLUENT HELP算例精选中文版(→)目录前言..2目录FLUENT经典算例翻译之一算例1介绍如何使用 Fluent算例4非定常可压缩流动模型.52算例5辐射与自然对流模拟·:······99FLUENT经典算例翻译之二算例13使用非预混燃烧模型151算例15蒸发性液体喷雾建模.∴214算例18使用混合物多相模型和欧拉多相模型..∴252算例21使用欧拉多相粒子传热模型垂··D垂垂垂。看垂垂垂看D看垂·D4。垂278ww.myCFDcn《数值计算与工程仿真》专刊一 FLUENT HELP算例精选中文版(→)算例1介绍如何使用 Fluent引言此向导通过图例说明了一个发生在混合弯管处的两维湍流流动和传热问题的求解方法和过程。这种混合弯管的结构常见于发电厂和化工厂的管道系统中。正确计算出弯管内流体交汇处附近的流场和温度场分布,对于设计合适的入口管道位置具有重要意义通过此向导,用户可学会以下内容●在 Fluent中输入网格文件使用混合单位制去定义儿何体和流体的属性设置强制对流的湍流流动的流体物性和边界条件迭代计算并使用残差监视器监测计算过程及其收敛性●使用隔离求解器进行求解使用等势图检察流场和温度场●运用二阶离散化方法重新计算以获得更佳的温度分布对网格进行温度梯度自适应,进一步求解更佳的温度场分布前提条件在学习此向导之前,假设用户还没有使用 Fluent的给验,不过,已经学习过用户指南第一章中的简单算例,并且熟悉 Fluent的界面及其指南中的规约可题描述问题如图1-1所小。一股温度为26℃的冷流体流入大管道,在弯管处与另股温度为40℃热流体混合。管道的长度单位为英寸,而流体的属性和边界条件则使用国际单位。入口管道的雷诺数为2.03×105,因此,选择湍流流动模型。4ww.myCFDcn《数值计算与工程仿真》专刊一 FLUENT HELP算例精选中文版(→)P =100 kg/viscosity8x14FConductivity: k=0.537 Y4 miK2SpC Ic Heat 9=4216 Jkg-k6酽.2mT1121m图图1-1问题说明准备工作1.从 Fluent的文件光盘中拷贝文件 elbow/ elbow, msh到电脑的 Fluent作日录中对于Unⅸx系统,当把文件光盘放入电脑光驱后,可以在以下目录找到这个文件:/ edrom/uent61/help/ tuttles述 cdrom为电脑的光驱目录对于 windows系统,当把文件光盘放入电脑光驱后,可以在以下冂录找到个文件cdrom: fluent 6.1 help tutfiles上述 cdrom为电脑的光驱目录2.启动 Fluent,选择2D求解器。ww.myCFDcn《数值计算与工程仿真》专刊一 FLUENT HELP算例精选中文版(→)第1步:与网格相关的操作读取网格文件 elbow, mshFilc→Read+}CascSelect fileFiterh,于d,SH,GRdirectoriesFileshome user tutorial/elbow. msh/home userautorialaCase Filehome /user/tutorialoKFiterCancela)在 Files项中点击选中 elbow. msh,然后点击OK完成操作。注意当 Fluent读取网格文件的同时,信息会不断显示在反馈窗口内,报告网格转化的过程。当读取网格文件完毕, Fluent的反馈窗凵会显示共读取了918个三角形的流体单元,以及许多带着不同分区标识符的边界面。2.网格检查。Grid→} Check6ww.myCFDcn《数值计算与工程仿真》专刊一 FLUENT HELP算例精选中文版(→)F1uent的信息反馈窗口会显示如下信息:Grid checkDomain extentscoordinate:min(m)=0.0000009+00,max(m)=6.400001e+01y- coordinate:min(m)=-4.538534e+00,max(m)=6.400000e+01Volume slatisticsminimum volume (m3): 2.782193c-01maximum volume (m3):3.926232e+00total volume (m3):1.682930e+03Face area statisticsminimum face area (m2):8.015718e-01maximum face area(m2):4. 118252e+00Checking number of nodes per cellChecking number of faces per cellChecking thread pointers.Checking number of cells per faceChecking face cellsChecking bridge facesChecking right-handed cellsChecking face handednessChecking element type consistencyChecking boundary typesChecking face pairs.Checking periodic boundaries.Checking node countChecking nosolve cell countChecking nosolve face countChecking face childrenChecking cell childrenChecking storageww.myCFDcn《数值计算与工程仿真》专刊一 FLUENT HELP算例精选中文版(→)Done注意网格检查结東后,信息反馈窗∏会以默认的SI单位制给出网格在ⅹ轴和Y轴上的最大和最小值,并将报告出网格的賦它特性。网格检查还会报告出有关网格的任何错误。需要特别注意的是,确保最小体积不能是负值,否则 Fluent无法进行计算。在SI单位制中,默认单位是m,若想改变单位制,使用 in ches:可以打开 Scale grid对话框。3.平滑(或者交换)网格Grid→} Smooth/swap…Smooth/Swap GridsmoothSwap InfoMethodNumber SwappedskewnessMinimum skewnesscumber visitedNumher of lerationsSmoothCloseFluent读取网格文件后,平滑三角形或四边形网格是一个良好的习惯,那样能确保使用质量铰好的网格进行计算。a)点击按钮 Smooth,再点击按钮Swap,重复上述操作,直到 Fluent报告没有需要交换的面为止。若 Fluent再无法通过交换改善网格质量,则没有平面可被交换了。b)点击 Close关闭对话框。ww.myCFDcn《数值计算与工程仿真》专刊一 FLUENT HELP算例精选中文版(→)4.更改网格的长度单位Grid→ scalea)在 Units conversion(单位转换)项的 Grid was created ln(网格长度单位)的右侧下拉列表中选择In(代表选择了英寸b)点击 Scale按钮,更改长度单位。在 Domain extents栏中采用了默认的SI单位制,长度单位为mc)点击按钮 Change length Units,设定 inches(英寸)为此次计算采用的长度单位确保Xmax(in)和Ymax(in)中数值为64英尺。(如图1.1)Scale gridScale factorsUnit a conversion00254rid Was Created In inY0+0254Change Length UnitsDomain extentsXmax [in]E4400001Ymin (in534Ymax(in) 64scaleUnscaleCloseHeld)计算采川的长度单位已被吏改为 inches(英寸),此时便能正确反映网格的几何尺寸注意此算例的求解过程中,除了长度外,其它单位均采用SI制。一般来说,没有必要对其它单位进行改动。按照上述的操作,长度单位已被确定为 inches若用户想采用别的单位制作为长度单位,如mm,可以在 Define的下拉菜单中打开 Set units对话框,进行更改。ww.myCFDcn《数值计算与工程仿真》专刊一 FLUENT HELP算例精选中文版(→)5.显示网格。(图1.2)Display→Grid,,Grid DisplOptionsEdge TypeSurfaces三彐p Mores今Atermal-3pressure-outlet-7H Edgesv feature velocity-inlet-5p facesy outlineuelocily-inlet-rall-4Partitionswall-iiShrink factor到终安Surface Types且彐Surface eame patternclip-surfHatchfanOutline InteriorDIsplayColorsCloseHelpa)确保在 surfaces项屮的所有表面都被选屮,然后点击 Display。ww.myCFDcn
- 2020-11-30下载
- 积分:1