登录
首页 » Others » 各种直方图均衡化算法

各种直方图均衡化算法

于 2020-07-02 发布
0 316
下载积分: 1 下载次数: 11

代码说明:

里面包含大量直方图均衡化算法,部分程序有对应的论文。只有glg算法是opencv的,其他都是matlab程序,内含CLAHE,AHE,MMBEBHE,RMSHE,RSIHE,BBHE,DSIHE,权重的直方图均衡化,等等。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Html+CSS +Javascript实现的个很炫个人主页网页
    Html+CSS +Javascript实现的一个很炫个人主页网页,完全是原创,在Firefox下,IE下测试都通过。大部分都实现了三个浏览器的兼容。
    2021-05-06下载
    积分:1
  • ECC点乘verilog硬件实现
    实现了ECC点乘,二进制伽罗瓦域,顶层点乘算法模块使用了一篇论文中介绍的高速点乘运算
    2020-11-28下载
    积分:1
  • 汽车混合动力simulink仿真模型
    汽车混合动力simulink模型。里面带说明
    2020-12-07下载
    积分:1
  • Lectures on Stochastic Programming-Model
    这是一本关于随机规划比较全面的书!比较难,不太容易啃,但是读了之后收获很大。这是高清版的!To Julia, Benjamin, Daniel, Nalan, and Yael;to Tsonka Konstatin and Marekand to the memory of feliks, Maria, and dentcho2009/8/20pagContentsList of notationserace1 Stochastic Programming ModelsIntroduction1.2 Invento1.2.1The news vendor problem1.2.2Constraints12.3Multistage modelsMultiproduct assembl1.3.1Two-Stage Model1.3.2Chance Constrained ModeMultistage modelPortfolio selection131.4.1Static model14.2Multistage Portfolio selection14.3Decision rule211.5 Supply Chain Network Design22Exercises2 Two-Stage Problems272.1 Linear Two-Stage Problems2.1.1Basic pi272.1.2The Expected Recourse Cost for Discrete Distributions 302.1.3The Expected Recourse Cost for General Distributions.. 322.1.4Optimality Conditions垂Polyhedral Two-Stage Problems422.2.1General Properties422.2.2Expected recourse CostOptimality conditions2.3 General Two-Stage Problems82.3.1Problem Formulation, Interchangeability482.3.2Convex Two-Stage Problems2.4 Nonanticipativity2009/8/20page villContents2.4.1Scenario formulation2.4.2Dualization of Nonanticipativity Constraints2.4.3Nonanticipativity duality for general Distributions2.4.4Value of perfect infExercises3 Multistage problems3. 1 Problem Formulation633.1.1The general setting3.1The Linear case653.1.3Scenario trees3.1.4Algebraic Formulation of nonanticipativity constraints 7lDuality....763.2.1Convex multistage problems·763.2.2Optimality Conditions3.2.3Dualization of Feasibility Constraints3.2.4Dualization of nonanticipativity ConstraintsExercises4 Optimization models with Probabilistic Constraints874.1 Introduction874.2 Convexity in Probabilistic Optimization4.2Generalized Concavity of Functions and measures4.2.2Convexity of probabilistically constrained sets1064.2.3Connectedness of Probabilistically Constrained Sets... 113Separable probabilistic Constraints.1144.3Continuity and Differentiability Properties ofDistribution functions4.3.2p-Efficient Points.1154.3.3Optimality Conditions and Duality Theory1224 Optimization Problems with Nonseparable Probabilistic Constraints.. 1324.4Differentiability of Probability Functions and OptimalityConditions13344.2Approximations of Nonseparable ProbabilisticConstraints134.5 Semi-infinite Probabilistic Problems144E1505 Statistical Inference155Statistical Properties of Sample Average Approximation Estimators.. 1555.1.1Consistency of SAA estimators1575.1.2Asymptotics of the saa Optimal value1635.1.3Second order asStochastic Programs5.2 Stoch1745.2.1Consistency of solutions of the SAA GeneralizedEquatio1752009/8/20pContents5.2.2Atotics of saa generalized equations estimators 1775.3 Monte Carlo Sampling Methods180Exponential Rates of Convergence and Sample sizeEstimates in the Case of a finite Feasible se1815.3.2Sample size estimates in the General Case1855.3.3Finite Exponential Convergence1915.4 Quasi-Monte Carlo Methods1935.Variance-Reduction Techniques198Latin hmpling1985.5.2Linear Control random variables method200ng and likelihood ratio methods 205.6 Validation analysis5.6.1Estimation of the optimality g2025.6.2Statistical Testing of Optimality Conditions2075.7Constrained Probler5.7.1Monte Carlo Sampling Approach2105.7.2Validation of an Optimal solution5.8 SAA Method Applied to Multistage Stochastic Programmin205.8.1Statistical Properties of Multistage SAA Estimators22l5.8.2Complexity estimates of Multistage Programs2265.9 Stochastic Approximation Method2305.9Classical Approach5.9.2Robust sA approach..23359.3Mirror Descent sa method235.9.4Accuracy Certificates for Mirror Descent Sa Solutions.. 244Exercis6 Risk Averse Optimi2536.1 Introductio6.2 Mean-Risk models.2546.2.1Main ideas of mean -Risk analysis546.2.2Semideviation6.2.3Weighted Mean Deviations from Quantiles.2566.2.4Average value-at-Risk2576.3 Coherent risk measures2616.3.1Differentiability Properties of Risk Measures2656.3.2Examples of risk Measures..2696.3.3Law invariant risk measures and Stochastic orders2796.3.4Relation to Ambiguous Chance Constraints2856.4 Optimization of risk measures.2886.4.1Dualization of Nonanticipativity Constraints2916.4.2Examples...2956.5 Statistical Properties of Risk measures6.5.IAverage value-at-Ris6.52Absolute semideviation risk measure301Von mises statistical functionals3046.6The problem of moments306中2009/8/20page xContents6.7 Multistage Risk Averse Optimization3086.7.1Scenario tree formulation3086.7.2Conditional risk mappings3156.7.3Risk Averse multistage Stochastic Programming318Exercises3287 Background material3337.1 Optimization and Convex Analysis..334Directional Differentiability3347.1.2Elements of Convex Analysis3367.1.3Optimization and duality3397.1.4Optimality Conditions.............3467.1.5Perturbation analysis3517.1.6Epiconvergence3572 Probability3597.2.1Probability spaces and random variables7.2.2Conditional Probability and Conditional Expectation... 36372.3Measurable multifunctions and random functions3657.2.4Expectation Functions.3687.2.5Uniform Laws of Large Numbers...,,3747.2.6Law of Large Numbers for Random Sets andSubdifferentials3797.2.7Delta method7.2.8Exponential Bounds of the Large Deviations Theory3877.2.9Uniform Exponential Bounds7.3 Elements of Functional analysis3997.3Conjugate duality and differentiability.......... 4017.3.2Lattice structure4034058 Bibliographical remarks407Biibliography415Index4312009/8/20pageList of Notationsequal by definition, 333IR", n-dimensional space, 333A, transpose of matrix(vector)A, 3336I, domain of the conjugate of risk mea-C(X) space of continuous functions, 165sure p, 262CK, polar of cone C, 337Cn, the space of nonempty compact sub-C(v,R"), space of continuously differ-sets of r 379entiable mappings,176set of probability density functions,I Fr influence function. 3042L, orthogonal of (linear) space L, 41Sz, set of contact points, 3990(1), generic constant, 188b(k; a, N), cdf of binomial distribution,Op(), term, 382214S, the set of &-optimal solutions of theo, distance generating function, 236true problem, 18g(x), right-hand-side derivative, 297Va(a), Lebesgue measure of set A C RdCl(A), topological closure of set A, 334195conv(C), convex hull of set C, 337W,(U), space of Lipschitz continuousCorr(X, Y), correlation of X and Y 200functions. 166. 353CoV(X, Y, covariance of X and y, 180[a]+=max{a,0},2ga, weighted mean deviation, 256IA(, indicator function of set A, 334Sc(, support function of set C, 337n(n.f. p). space. 399A(x), set ofdist(x, A), distance from point x to set Ae multipliers vectors334348dom f, domain of function f, 333N(μ,∑), nonmal distribution,16Nc, normal cone to set C, 337dom 9, domain of multifunction 9, 365IR, set of extended real numbers. 333o(z), cdf of standard normal distribution,epif, epigraph of function f, 333IIx, metric projection onto set X, 231epiconvergence, 377convergence in distribution, 163SN, the set of optimal solutions of the0(x,h)d order tangent set 348SAA problem. 156AVOR. Average value-at-Risk. 258Sa, the set of 8-optimal solutions of thef, set of probability measures, 306SAA problem. 181ID(A, B), deviation of set A from set Bn,N, optimal value of the Saa problem,334156IDIZ], dispersion measure of random vari-N(x), sample average function, 155able 7. 2541A(, characteristic function of set A, 334吧, expectation,361int(C), interior of set C, 336TH(A, B), Hausdorff distance between setsLa」, integer part of a∈R,219A and B. 334Isc f, lower semicontinuous hull of funcN, set of positive integers, 359tion f, 3332009/8/20pageList of notationsRc, radial cone to set C, 337C, tangent cone to set C, 337V-f(r), Hessian matrix of second orderpartial derivatives, 179a. subdifferential. 338a, Clarke generalized gradient, 336as, epsilon subdifferential, 380pos w, positive hull of matrix W, 29Pr(A), probability of event A, 360ri relative interior. 337upper semideviation, 255Le, lower semideviation, 255@R. Value-at-Risk. 25Var[X], variance of X, 149, optimal value of the true problem, 1565=(51,……,5), history of the process,{a,b},186r, conjugate of function/, 338f(x, d), generalized directional deriva-g(x, h), directional derivative, 334O,(, term, 382p-efficient point, 116lid, independently identically distributed,1562009/8/20page xlllPrefaceThe main topic of this book is optimization problems involving uncertain parametersfor which stochastic models are available. Although many ways have been proposed tomodel uncertain quantities stochastic models have proved their flexibility and usefulnessin diverse areas of science. This is mainly due to solid mathematical foundations andtheoretical richness of the theory of probabilitystochastic processes, and to soundstatistical techniques of using real dataOptimization problems involving stochastic models occur in almost all areas of scienceand engineering, from telecommunication and medicine to finance This stimulates interestin rigorous ways of formulating, analyzing, and solving such problems. Due to the presenceof random parameters in the model, the theory combines concepts of the optimization theory,the theory of probability and statistics, and functional analysis. Moreover, in recent years thetheory and methods of stochastic programming have undergone major advances. all thesefactors motivated us to present in an accessible and rigorous form contemporary models andideas of stochastic programming. We hope that the book will encourage other researchersto apply stochastic programming models and to undertake further studies of this fascinatinand rapidly developing areaWe do not try to provide a comprehensive presentation of all aspects of stochasticprogramming, but we rather concentrate on theoretical foundations and recent advances inselected areas. The book is organized into seven chapters The first chapter addresses modeling issues. The basic concepts, such as recourse actions, chance(probabilistic)constraintsand the nonanticipativity principle, are introduced in the context of specific models. Thediscussion is aimed at providing motivation for the theoretical developments in the book,rather than practical recommendationsChapters 2 and 3 present detailed development of the theory of two-stage and multistage stochastic programming problems. We analyze properties of the models and developoptimality conditions and duality theory in a rather general setting. Our analysis coversgeneral distributions of uncertain parameters and provides special results for discrete distributions, which are relevant for numerical methods. Due to specific properties of two- andmultistage stochastic programming problems, we were able to derive many of these resultswithout resorting to methods of functional analvsisThe basic assumption in the modeling and technical developments is that the proba-bility distribution of the random data is not influenced by our actions(decisions). In someapplications, this assumption could be unjustified. However, dependence of probability dis-tribution on decisions typically destroys the convex structure of the optimization problemsconsidered, and our analysis exploits convexity in a significant way
    2020-12-09下载
    积分:1
  • 软件测试实用教——方法与实践(第2版)[武剑洁][电子教案和教学指南].rar
    围绕软件测试的核心概念,介绍了软件测试的基本方法和过程,并通过丰富的案例予以实践。全书共三部分。第一部分软件测试概述,对软件测试的核心概念与思想(软件缺陷、测试用例、自动化测试)展开初步的讨论和测试实践。第二部分软件测试技术,详细讨论了传统的黑盒测试方法和白盒测试方法,针对每种测试方法均按照基本原理、测试用例设计和捉虫实践的顺序依次展开阐述;对应黑盒测试和白盒测试给出了综合案例实践。第三部分软件测试应用,从测试实施的角度,分为单元测试、集成测试和系统测试三个阶段进行讨论;最后提供了综合应用案例实践,从自动化测试的角度,结合单元测试工具、功能测试工具和性能测试工具,讨论自动化测试的设计与实施。
    2020-06-27下载
    积分:1
  • rdlc 在vs2017环境下辑需要的三个reportviewer插件
    该压缩包为vs2017环境下对rdlc报表编辑所需的reportviewer插件,安装顺序依次为reportviewer.exe、reportviewLP.exe、 reportviewer.msi。
    2020-12-01下载
    积分:1
  • 很详细的EM算法,GMM,HMM训练用
    详细介绍了训练hmm和gmm的EM算法,以及其应用,对利用这些模型的朋友,想了解此算法的最好的资料。
    2020-12-03下载
    积分:1
  • 通俗的模糊控制算法讲解
    用比较通俗的语言讲解模糊控制算法,适合有一定基础的人
    2020-12-06下载
    积分:1
  • 东南大学计算机图形学实验二 简单渲染生成真实三维图形 纹理贴图
    a. 实现简单渲染,生成一个真实感三维物体b. 允许用户以鼠标位置指定光源位置c. 可以编辑,修改物体表面材质属性d. 可以选择一副图像作为纹理贴到物体表面
    2020-12-11下载
    积分:1
  • 清华模式识别第大次作业
    用身高体重数据进行性别分类的实验用本组采集的数据作训练样本,采用身高和体重为特征进行性别分类,在正态分布假设下估计概率密度,建立最小错误率贝叶斯分类器,写出得到的决策规则;将分类器应用到训练集上计算训练错误率;把分类器应用到dataset1.txt 上,计算测试错误率。在分类器设计时尝试采用不同先验概率(比如0.5 对0.5,0.24 对0.76 等),考查对决策和错误率的影响。自行给出一个决策表,采用最小风险贝叶斯决策重复上面的实验。用题2 中得到的似然比或对数似然比为分类指标,粗略画出ROC 曲线。
    2020-12-09下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载