登录
首页 » Others » 简化后--人机五子棋

简化后--人机五子棋

于 2019-12-06 发布
0 129
下载积分: 1 下载次数: 6

代码说明:

说明:  labview五子棋小游戏,可以来看看哦,、很不错(With the continuous improvement of living standards, people no longer sati-sfied with just material life, leisure time people will choose your favorite enter-t-ainment used for recreation.)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 实代数几何中的算法
    【实例简介】《实代数几何中的算法》(《Algorithms in Real Algebraic Geometry》)Saugata Basu,Richard Pollack,Marie-Françoise Roy著
    2021-09-28 00:31:12下载
    积分:1
  • 基于Arnold变换和混沌映射的图像加密方法_
    基于Arnold变换和混沌映射的图像加密方法_
    2020-12-02下载
    积分:1
  • 使用ffmpeg api解码h264视频码流,并且能实时显示
    使用ffmpeg api解码h264视频,并且将解码后的视频图像用opencv封装的接口进行显示,另外,程序还封装了将每帧图像保存成bmp文件的接口。
    2020-12-05下载
    积分:1
  • CCNA+CCNP笔记+CCNP案例+实验
    大牛学习思科网络总结出将近2000页的CCNA+CCNP笔记+CCNP案例+实验学习笔记,都是干货!
    2020-12-09下载
    积分:1
  • seedtree
    用vrmlscript制作的三维场景绿化植树功能源代码及图片,用BS浏览器可查看,在控制台可以直接打印出生成的源代码,生成源代码可直接复制到场景中永久保存,相当于一个可视化的vrml绿化编辑器。(Produced by using three-dimensional scenes vrmlscript greening and tree planting function source code and pictures, with BS browser can view in the console can directly print out the generated source code to generate the source code can be directly copied to the permanent preservation of the scene, which is equivalent to a Visualization of VRML Green editor.)
    2007-11-25 14:08:26下载
    积分:1
  • 系统辨识大牛Ljung写的MATLAB系统辨识使用手册
    系统辨识大牛Ljung编写的MATLAB系统辨识使用手册,这本书详细地介绍了在MATLAB已经所属simulink环境下,系统辨识工具箱的一些使用办法,是一本非常经典的教材!Revision Historypril 1988First printingJuly 1991Second printingMay1995Third printingNovember 2000 Fourth printingRevised for Version 5.0(Release 12)pril 2001Fifth printingJuly 2002Online onlyRevised for Version 5.0.2 Release 13)June 2004Sixth printingRevised for Version 6.0.1(Release 14)March 2005Online onlyRevised for Version 6.1.1Release 14SP2)September 2005 Seventh printingRevised for Version 6.1.2(Release 14SP3)March 2006Online onlyRevised for Version 6.1.3(Release 2006a)September 2006 Online onlyRevised for Version 6.2 Release 2006b)March 2007Online onlyRevised for Version 7.0 ( Release 2007a)September 2007 Online onlyRevised for Version 7.1 (Release 2007bMarch 2008Online onlyRevised for Version 7.2(Release 2008a)October 2008Online onlyRevised for Version 7.2.1 Release 2008b)March 2009Online onlyRevised for Version 7.3(Release 2009a)September 2009 Online onlyRevised for Version 7.3.1(Release 2009b)March 2010Online onlyRevised for Version 7. 4 (Release 2010a)eptember2010 Online onlyRevised for Version 7.4.1(Release 2010b)pril 2011Online onlRevised for Version 7.4.2(Release 2011a)September 2011 Online onlyRevised for Version 7.4.3(Release 2011b)March 2012Online onlyRevised for Version 8.0( Release 2012aabout the DevelopersAbout the Developersystem Identification Toolbox software is developed in association with thefollowing leading researchers in the system identification fieldLennart Ljung. Professor Lennart Ljung is with the department ofElectrical Engineering at Linkoping University in Sweden. He is a recognizedleader in system identification and has published numerous papers and booksin this areaQinghua Zhang. Dr. Qinghua Zhang is a researcher at Institut Nationalde recherche en Informatique et en Automatique(INria) and at Institut deRecherche en Informatique et systemes Aleatoires (Irisa), both in rennesFrance. He conducts research in the areas of nonlinear system identificationfault diagnosis, and signal processing with applications in the fields of energyautomotive, and biomedical systemsPeter Lindskog. Dr. Peter Lindskog is employed by nira dynamiAB, Sweden. He conducts research in the areas of system identificationsignal processing, and automatic control with a focus on vehicle industryapplicationsAnatoli Juditsky. Professor Anatoli Juditsky is with the laboratoire JeanKuntzmann at the Universite Joseph Fourier, Grenoble, france. He conductsresearch in the areas of nonparametric statistics, system identification, andstochastic optimizationAbout the developersContentsChoosing Your System Identification ApproachLinear model structures1-2What Are Model objects?Model objects represent linear systemsAbout model data1-5Types of Model objectsDynamic System Models1-9Numeric Models1-11umeric Linear Time Invariant (LTD Models1-11Identified LTI modelsIdentified Nonlinear models1-12Nonlinear model structures1-13Recommended Model Estimation Sequence1-14Supported Models for Time- and Frequency-DomainData,,,,,,,1-16Supported Models for Time-Domain Data1-16Supported Models for Frequency-Domain Data1-17See also1-18Supported Continuous-and Discrete-Time Models1-19Model estimation commands1-21Creating Model Structures at the command Line ... 1-22about system Identification Toolbox Model Objects ... 1-22When to Construct a Model Structure Independently ofEstimation1-23Commands for Constructing Model Structures1-24Model Properties1-25See als1-27Modeling Multiple-Output Systems ......... 1-28About Modeling multiple-Output Systems1-28Modeling Multiple Outputs Directly1-29Modeling multiple outputs as a Combination ofSingle-Output Models.......1-29Improving Multiple-Output Estimation Results byWeighing Outputs During Estimation ....... 1-30Identified linear Time-Invariant models1-32IDLTI Models1-32Configuration of the Structure of Measured and Noise oRepresentation of the Measured and noise Components foVarious model Types1-33Components ....1-35Imposing Constraints on the Values of ModeParameters1-37Estimation of Linear models1-8Data Import and Processing2「Supported Data ...2-3Ways to Obtain Identification DataWays to Prepare Data for System Identification ... 2-6Requirements on Data SamplingRepresenting Data in MATLAB Workspace·····Time-Domain Data Representation2-9Time-Series Data Representation2-10ContentsFrequency-Domain Data Representation ....... 2-11Importing Data into the Gui2-17Types of Data You Can import into the GUi2-17Importing time-Domain Data into the GUI2-18Importing Frequency-Domain Data into the GUI2-22Importing Data Objects into the GUI ......... 2-30Specifying the data sampling interval2-34Specifying estimation and validation Data2-35Preping data Using Quick StartCreating Data Sets from a Subset of Signal Channelo2-362-37Creating multiexperiment Data Sets in the gUi2-39Managing data in the gui ............. 2-46Representing Time- and Frequency-Domain Data Usingiddata object2-55iddata constructor2-55iddata Properties.........2-58Creating Multiexperiment Data at the Command Line .. 2-61Select Data Channels, I/O Data and Experiments in iddataObjects2-63Increasing Number of Channels or Data Points of iddataObjects2-67Managing iddata Objects2-69Representing Frequency-Response Data Using idfrdObiec2-76idfrd Constructor2-76idfrd Properties2-77Select I/o Channels and Data in idfrd Objects ..... 2-79Adding Input or Output Channels in idfrd Objects2-80Managing idfrd Objects2-83Operations That Create idfrd Objects2-83Analyzing Data quality2-85Is your data ready for modeling?2-85Plotting Data in the guI Versus at the command line2-86How to plot data in the gui2-86How to plot data at the command line2-92How to Analyze Data Using the advice Command2-94Selecting Subsets of Data2-96IXWhy Select Subsets of Data?2-96Extract Subsets of Data Using the GUI2-97Extract Subsets of data at the Command Line2-99Handling Missing Data and outliers2-100Handling missing data2-100Handling outliers2-101Extract and Model Specific Data Segments2-102See also2-103Handling offsets and Trends in Data2-104When to detrend data2-104Alternatives for Detrending Data in GUi or at theCommand-Line2-105Next Steps After detrending2-107How to Detrend Data Using the Gui2-108How to detrend data at the Command line2-109Detrending Steady-State Dat109cending transient Dat2-109See also2-110Resampling Data2-111What Is resampling?...,,.,,,,,,,,,,,.2-111Resampling data without Aliasing Effects2-112See also2-116Resampling data Using the GUi.,,,,2-117Resampling Data at the Command line2-118Filtering Data2-120Supported Filters2-120Choosing to Prefilter Your Data2-120See also2-121How to Filter Data Using the gui2-122Filtering Time-Domain Data in the GuI........ 2-122Content
    2020-12-11下载
    积分:1
  • MIMO-OFDM系统基于导频信道估计算法仿真
    论文介绍MIMO-OFDM系统中几种基于导频的信道估计方法。首先研究了单天线OFDM系统的信道估计算法。一方面重点关注三种估计准则的原理,仿真表明LMMSE准则具有最佳的性能;另一方面介绍了几种插值的方法用来恢复非导频处的信道信息。然后研究了发射分集OFDM系统的信道估计,重点分析了三种导频的设计方案。仿真表明,使用最佳训练序列可以达到最优的性能,同时占用的资源少,但是复杂度很高。关键词:无线移动通信;正交频分复用;多输入多输出;信道估计;最小均方误差;最佳训练序
    2020-11-29下载
    积分:1
  • 基于Matlab的成绩管理GUI界面设计
    用matlab自带的GUI界面设计了一个成绩管理界面,可进行成绩的载入、查询、绘图、求平均分和存储!可直接用!
    2020-12-03下载
    积分:1
  • 机械设计齿轮设计序源代码
    武汉大学动力与机械学院机械设计齿轮设计程序源代码
    2020-12-11下载
    积分:1
  • labview-and-SQL
    labview编程使用中,labview和SOL语言之间对数据库的操作。(the use about labview and SQL.)
    2012-12-03 17:50:00下载
    积分:1
  • 696518资源总数
  • 104228会员总数
  • 45今日下载