登录
首页 » Python » mx-maskrcnn-master

mx-maskrcnn-master

于 2020-06-17 发布
0 119
下载积分: 1 下载次数: 5

代码说明:

说明:  我们提出了一个简单、灵活和通用的对象实例分割框架。我们的方法能有效检测图像中的对象,同时为每个实例生成高质量的 segmentation mask。这种被称为 Mask R-CNN 的方法通过添加用于预测 object mask 的分支来扩展 Faster R-CNN,该分支与用于边界框识别的现有分支并行。Mask R-CNN 训练简单,只需在以 5fps 运行的 Faster R-CNN 之上增加一个较小的 overhead。此外,Mask R-CNN 很容易推广到其他任务,例如它可以允许同一个框架中进行姿态估计。我们在 COCO 系列挑战的三个轨道任务中均取得了最佳成果,包括实例分割、边界对象检测和人关键点检测。没有任何 tricks,Mask R-CNN 的表现优于所有现有的单一模型取得的成绩,包括 COCO 2016 挑战赛的冠军。(Mask R-CNN code by HeKaiming)

文件列表:

mx-maskrcnn-master, 0 , 2018-02-28
mx-maskrcnn-master\.gitignore, 988 , 2018-02-28
mx-maskrcnn-master\.gitmodules, 103 , 2018-02-28
mx-maskrcnn-master\LICENSE, 11357 , 2018-02-28
mx-maskrcnn-master\Makefile, 221 , 2018-02-28
mx-maskrcnn-master\README.md, 5451 , 2018-02-28
mx-maskrcnn-master\data, 0 , 2018-02-28
mx-maskrcnn-master\data\cityscape, 0 , 2018-02-28
mx-maskrcnn-master\data\cityscape\imglists, 0 , 2018-02-28
mx-maskrcnn-master\data\cityscape\imglists\test.lst, 200205 , 2018-02-28
mx-maskrcnn-master\data\cityscape\imglists\train.lst, 412545 , 2018-02-28
mx-maskrcnn-master\data\cityscape\imglists\val.lst, 67790 , 2018-02-28
mx-maskrcnn-master\demo_mask.py, 2115 , 2018-02-28
mx-maskrcnn-master\eval_maskrcnn.py, 2113 , 2018-02-28
mx-maskrcnn-master\figures, 0 , 2018-02-28
mx-maskrcnn-master\figures\maskrcnn_result.png, 900697 , 2018-02-28
mx-maskrcnn-master\figures\test.jpg, 40967 , 2018-02-28
mx-maskrcnn-master\incubator-mxnet, 0 , 2018-02-28
mx-maskrcnn-master\rcnn, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\CXX_OP, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\CXX_OP\roi_align-inl.h, 8596 , 2018-02-28
mx-maskrcnn-master\rcnn\CXX_OP\roi_align.cc, 2824 , 2018-02-28
mx-maskrcnn-master\rcnn\CXX_OP\roi_align.cu, 12308 , 2018-02-28
mx-maskrcnn-master\rcnn\CXX_OP\roi_align_v1-inl.h, 15877 , 2018-02-28
mx-maskrcnn-master\rcnn\CXX_OP\roi_align_v1.cc, 3090 , 2018-02-28
mx-maskrcnn-master\rcnn\CXX_OP\roi_align_v1.cu, 446 , 2018-02-28
mx-maskrcnn-master\rcnn\PY_OP, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\PY_OP\__init__.py, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\PY_OP\fpn_roi_pooling.py, 4584 , 2018-02-28
mx-maskrcnn-master\rcnn\PY_OP\mask_output.py, 1971 , 2018-02-28
mx-maskrcnn-master\rcnn\PY_OP\mask_roi.py, 2240 , 2018-02-28
mx-maskrcnn-master\rcnn\PY_OP\proposal_fpn.py, 8149 , 2018-02-28
mx-maskrcnn-master\rcnn\__init__.py, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\config.py, 5104 , 2018-02-28
mx-maskrcnn-master\rcnn\core, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\core\__init__.py, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\core\callback.py, 1710 , 2018-02-28
mx-maskrcnn-master\rcnn\core\loader.py, 24515 , 2018-02-28
mx-maskrcnn-master\rcnn\core\metric.py, 9044 , 2018-02-28
mx-maskrcnn-master\rcnn\core\module.py, 8588 , 2018-02-28
mx-maskrcnn-master\rcnn\core\solver.py, 3136 , 2018-02-28
mx-maskrcnn-master\rcnn\core\tester.py, 13716 , 2018-02-28
mx-maskrcnn-master\rcnn\cython, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\cython\.gitignore, 15 , 2018-02-28
mx-maskrcnn-master\rcnn\cython\__init__.py, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\cython\anchors.pyx, 1185 , 2018-02-28
mx-maskrcnn-master\rcnn\cython\bbox.pyx, 1763 , 2018-02-28
mx-maskrcnn-master\rcnn\cython\cpu_nms.pyx, 2241 , 2018-02-28
mx-maskrcnn-master\rcnn\cython\gpu_nms.hpp, 146 , 2018-02-28
mx-maskrcnn-master\rcnn\cython\gpu_nms.pyx, 1110 , 2018-02-28
mx-maskrcnn-master\rcnn\cython\nms_kernel.cu, 5064 , 2018-02-28
mx-maskrcnn-master\rcnn\cython\setup.py, 5515 , 2018-02-28
mx-maskrcnn-master\rcnn\dataset, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\dataset\__init__.py, 53 , 2018-02-28
mx-maskrcnn-master\rcnn\dataset\cityscape.py, 12991 , 2018-02-28
mx-maskrcnn-master\rcnn\dataset\ds_utils.py, 442 , 2018-02-28
mx-maskrcnn-master\rcnn\dataset\imdb.py, 13205 , 2018-02-28
mx-maskrcnn-master\rcnn\io, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\io\__init__.py, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\io\image.py, 5850 , 2018-02-28
mx-maskrcnn-master\rcnn\io\rcnn.py, 19628 , 2018-02-28
mx-maskrcnn-master\rcnn\io\rpn.py, 10379 , 2018-02-28
mx-maskrcnn-master\rcnn\io\threaded_loader.py, 20199 , 2018-02-28
mx-maskrcnn-master\rcnn\processing, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\processing\__init__.py, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\processing\assign_levels.py, 1221 , 2018-02-28
mx-maskrcnn-master\rcnn\processing\bbox_regression.py, 9983 , 2018-02-28
mx-maskrcnn-master\rcnn\processing\bbox_transform.py, 5023 , 2018-02-28
mx-maskrcnn-master\rcnn\processing\generate_anchor.py, 2443 , 2018-02-28
mx-maskrcnn-master\rcnn\processing\nms.py, 1414 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools\UPSTREAM_REV, 80 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools\__init__.py, 21 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools\_mask.pyx, 11430 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools\coco.py, 18296 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools\cocoeval.py, 23849 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools\mask.py, 4570 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools\maskApi.c, 8249 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools\maskApi.h, 2176 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools\setup.py, 579 , 2018-02-28
mx-maskrcnn-master\rcnn\symbol, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\symbol\__init__.py, 30 , 2018-02-28
mx-maskrcnn-master\rcnn\symbol\symbol_mask_fpn.py, 33269 , 2018-02-28
mx-maskrcnn-master\rcnn\tools, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\tools\__init__.py, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\tools\demo_maskrcnn.py, 4732 , 2018-02-28
mx-maskrcnn-master\rcnn\tools\demo_single_image.py, 6421 , 2018-02-28
mx-maskrcnn-master\rcnn\tools\test_maskrcnn.py, 4730 , 2018-02-28
mx-maskrcnn-master\rcnn\tools\test_rpn.py, 4318 , 2018-02-28
mx-maskrcnn-master\rcnn\tools\train_maskrcnn.py, 9777 , 2018-02-28
mx-maskrcnn-master\rcnn\tools\train_rpn.py, 9360 , 2018-02-28
mx-maskrcnn-master\rcnn\utils, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\utils\__init__.py, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\utils\combine_model.py, 709 , 2018-02-28
mx-maskrcnn-master\rcnn\utils\load_data.py, 1718 , 2018-02-28
mx-maskrcnn-master\rcnn\utils\load_model.py, 1999 , 2018-02-28
mx-maskrcnn-master\rcnn\utils\save_model.py, 762 , 2018-02-28
mx-maskrcnn-master\scripts, 0 , 2018-02-28
mx-maskrcnn-master\scripts\demo.sh, 509 , 2018-02-28
mx-maskrcnn-master\scripts\demo_single_image.sh, 432 , 2018-02-28

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 对机载激光雷达原始数据Las格式和txt格式进行读取 adtive_feature1
    说明:  以python语言为平台,对机载激光雷达原始数据Las格式和txt格式进行读取,并根据信息熵确定维度特征计算的最佳邻域半径,最后计算得到最佳邻域半径和最佳维度特征值(Based on Python language, the Las format and TXT format of airborne lidar raw data are read, and the optimal neighborhood radius is determined according to the information entropy. Finally, the optimal neighborhood radius and the optimal dimension eigenvalue are calculated.)
    2020-12-18 18:39:11下载
    积分:1
  • volume3D
    使用vtk库开发的volume程序,主要用于建立多边形面片,用于演示三维体的算法。(Developed using VTK library volume procedures, set up primarily for polygon surfaces for the presentation of three-dimensional body algorithms.)
    2009-02-18 16:45:24下载
    积分:1
  • FTVd_v3.01
    图像盲解卷积复原,一模方法,算法在压缩包内(Blind Image Deconvolution recovery, a model approach, the algorithm in the compressed package)
    2009-12-09 12:43:59下载
    积分:1
  • wbalance1
    图象自动白平衡调整的代码 图象自动白平衡调整的代码(Auto White Balance Image code image automatically adjust white balance adjust code)
    2008-05-22 13:31:29下载
    积分:1
  • 5. Morphological Operations
    说明:  how to apply morphological operators on images
    2020-07-03 07:40:01下载
    积分:1
  • CONVERT_voxels_to_stl
    从matlab矩阵生成stl格式文件,适用于多孔介质图形生成(Generating STL format files from MATLAB matrix)
    2018-10-10 20:14:27下载
    积分:1
  • mx-maskrcnn-master
    我们提出了一个简单、灵活和通用的对象实例分割框架。我们的方法能有效检测图像中的对象,同时为每个实例生成高质量的 segmentation mask。这种被称为 Mask R-CNN 的方法通过添加用于预测 object mask 的分支来扩展 Faster R-CNN,该分支与用于边界框识别的现有分支并行。Mask R-CNN 训练简单,只需在以 5fps 运行的 Faster R-CNN 之上增加一个较小的 overhead。此外,Mask R-CNN 很容易推广到其他任务,例如它可以允许同一个框架中进行姿态估计。我们在 COCO 系列挑战的三个轨道任务中均取得了最佳成果,包括实例分割、边界对象检测和人关键点检测。没有任何 tricks,Mask R-CNN 的表现优于所有现有的单一模型取得的成绩,包括 COCO 2016 挑战赛的冠军。(Mask R-CNN code by HeKaiming)
    2020-06-17 15:20:12下载
    积分:1
  • dutu
    说明:  这是个读取视频中每一帧并按顺序保存的小工具,因网上现成的太少,故自己编写(This is a small tool for reading vedio and save every frame in it .)
    2019-05-21 17:46:14下载
    积分:1
  • exampleoflungregionextractionfromchestx
    matlab程序关于医学图像处理中的肺部分割的小例子,希望有帮助(matlab procedures regarding the medical image processing in the lungs of a small example of partition, I hope there is help)
    2009-03-23 23:53:56下载
    积分:1
  • VC++image-program
    这是一个详细的关于Vc++图像编程的ppt,希望对大家有帮助(This is a detailed on Vc++ Image programming ppt, hope everyone has to help)
    2008-05-28 17:20:04下载
    积分:1
  • 696518资源总数
  • 104509会员总数
  • 10今日下载