登录
首页 » Python » mx-maskrcnn-master

mx-maskrcnn-master

于 2020-06-17 发布 文件大小:1102KB
0 119
下载积分: 1 下载次数: 1

代码说明:

  我们提出了一个简单、灵活和通用的对象实例分割框架。我们的方法能有效检测图像中的对象,同时为每个实例生成高质量的 segmentation mask。这种被称为 Mask R-CNN 的方法通过添加用于预测 object mask 的分支来扩展 Faster R-CNN,该分支与用于边界框识别的现有分支并行。Mask R-CNN 训练简单,只需在以 5fps 运行的 Faster R-CNN 之上增加一个较小的 overhead。此外,Mask R-CNN 很容易推广到其他任务,例如它可以允许同一个框架中进行姿态估计。我们在 COCO 系列挑战的三个轨道任务中均取得了最佳成果,包括实例分割、边界对象检测和人关键点检测。没有任何 tricks,Mask R-CNN 的表现优于所有现有的单一模型取得的成绩,包括 COCO 2016 挑战赛的冠军。(Mask R-CNN code by HeKaiming)

文件列表:

mx-maskrcnn-master, 0 , 2018-02-28
mx-maskrcnn-master\.gitignore, 988 , 2018-02-28
mx-maskrcnn-master\.gitmodules, 103 , 2018-02-28
mx-maskrcnn-master\LICENSE, 11357 , 2018-02-28
mx-maskrcnn-master\Makefile, 221 , 2018-02-28
mx-maskrcnn-master\README.md, 5451 , 2018-02-28
mx-maskrcnn-master\data, 0 , 2018-02-28
mx-maskrcnn-master\data\cityscape, 0 , 2018-02-28
mx-maskrcnn-master\data\cityscape\imglists, 0 , 2018-02-28
mx-maskrcnn-master\data\cityscape\imglists\test.lst, 200205 , 2018-02-28
mx-maskrcnn-master\data\cityscape\imglists\train.lst, 412545 , 2018-02-28
mx-maskrcnn-master\data\cityscape\imglists\val.lst, 67790 , 2018-02-28
mx-maskrcnn-master\demo_mask.py, 2115 , 2018-02-28
mx-maskrcnn-master\eval_maskrcnn.py, 2113 , 2018-02-28
mx-maskrcnn-master\figures, 0 , 2018-02-28
mx-maskrcnn-master\figures\maskrcnn_result.png, 900697 , 2018-02-28
mx-maskrcnn-master\figures\test.jpg, 40967 , 2018-02-28
mx-maskrcnn-master\incubator-mxnet, 0 , 2018-02-28
mx-maskrcnn-master\rcnn, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\CXX_OP, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\CXX_OP\roi_align-inl.h, 8596 , 2018-02-28
mx-maskrcnn-master\rcnn\CXX_OP\roi_align.cc, 2824 , 2018-02-28
mx-maskrcnn-master\rcnn\CXX_OP\roi_align.cu, 12308 , 2018-02-28
mx-maskrcnn-master\rcnn\CXX_OP\roi_align_v1-inl.h, 15877 , 2018-02-28
mx-maskrcnn-master\rcnn\CXX_OP\roi_align_v1.cc, 3090 , 2018-02-28
mx-maskrcnn-master\rcnn\CXX_OP\roi_align_v1.cu, 446 , 2018-02-28
mx-maskrcnn-master\rcnn\PY_OP, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\PY_OP\__init__.py, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\PY_OP\fpn_roi_pooling.py, 4584 , 2018-02-28
mx-maskrcnn-master\rcnn\PY_OP\mask_output.py, 1971 , 2018-02-28
mx-maskrcnn-master\rcnn\PY_OP\mask_roi.py, 2240 , 2018-02-28
mx-maskrcnn-master\rcnn\PY_OP\proposal_fpn.py, 8149 , 2018-02-28
mx-maskrcnn-master\rcnn\__init__.py, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\config.py, 5104 , 2018-02-28
mx-maskrcnn-master\rcnn\core, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\core\__init__.py, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\core\callback.py, 1710 , 2018-02-28
mx-maskrcnn-master\rcnn\core\loader.py, 24515 , 2018-02-28
mx-maskrcnn-master\rcnn\core\metric.py, 9044 , 2018-02-28
mx-maskrcnn-master\rcnn\core\module.py, 8588 , 2018-02-28
mx-maskrcnn-master\rcnn\core\solver.py, 3136 , 2018-02-28
mx-maskrcnn-master\rcnn\core\tester.py, 13716 , 2018-02-28
mx-maskrcnn-master\rcnn\cython, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\cython\.gitignore, 15 , 2018-02-28
mx-maskrcnn-master\rcnn\cython\__init__.py, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\cython\anchors.pyx, 1185 , 2018-02-28
mx-maskrcnn-master\rcnn\cython\bbox.pyx, 1763 , 2018-02-28
mx-maskrcnn-master\rcnn\cython\cpu_nms.pyx, 2241 , 2018-02-28
mx-maskrcnn-master\rcnn\cython\gpu_nms.hpp, 146 , 2018-02-28
mx-maskrcnn-master\rcnn\cython\gpu_nms.pyx, 1110 , 2018-02-28
mx-maskrcnn-master\rcnn\cython\nms_kernel.cu, 5064 , 2018-02-28
mx-maskrcnn-master\rcnn\cython\setup.py, 5515 , 2018-02-28
mx-maskrcnn-master\rcnn\dataset, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\dataset\__init__.py, 53 , 2018-02-28
mx-maskrcnn-master\rcnn\dataset\cityscape.py, 12991 , 2018-02-28
mx-maskrcnn-master\rcnn\dataset\ds_utils.py, 442 , 2018-02-28
mx-maskrcnn-master\rcnn\dataset\imdb.py, 13205 , 2018-02-28
mx-maskrcnn-master\rcnn\io, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\io\__init__.py, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\io\image.py, 5850 , 2018-02-28
mx-maskrcnn-master\rcnn\io\rcnn.py, 19628 , 2018-02-28
mx-maskrcnn-master\rcnn\io\rpn.py, 10379 , 2018-02-28
mx-maskrcnn-master\rcnn\io\threaded_loader.py, 20199 , 2018-02-28
mx-maskrcnn-master\rcnn\processing, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\processing\__init__.py, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\processing\assign_levels.py, 1221 , 2018-02-28
mx-maskrcnn-master\rcnn\processing\bbox_regression.py, 9983 , 2018-02-28
mx-maskrcnn-master\rcnn\processing\bbox_transform.py, 5023 , 2018-02-28
mx-maskrcnn-master\rcnn\processing\generate_anchor.py, 2443 , 2018-02-28
mx-maskrcnn-master\rcnn\processing\nms.py, 1414 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools\UPSTREAM_REV, 80 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools\__init__.py, 21 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools\_mask.pyx, 11430 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools\coco.py, 18296 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools\cocoeval.py, 23849 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools\mask.py, 4570 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools\maskApi.c, 8249 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools\maskApi.h, 2176 , 2018-02-28
mx-maskrcnn-master\rcnn\pycocotools\setup.py, 579 , 2018-02-28
mx-maskrcnn-master\rcnn\symbol, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\symbol\__init__.py, 30 , 2018-02-28
mx-maskrcnn-master\rcnn\symbol\symbol_mask_fpn.py, 33269 , 2018-02-28
mx-maskrcnn-master\rcnn\tools, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\tools\__init__.py, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\tools\demo_maskrcnn.py, 4732 , 2018-02-28
mx-maskrcnn-master\rcnn\tools\demo_single_image.py, 6421 , 2018-02-28
mx-maskrcnn-master\rcnn\tools\test_maskrcnn.py, 4730 , 2018-02-28
mx-maskrcnn-master\rcnn\tools\test_rpn.py, 4318 , 2018-02-28
mx-maskrcnn-master\rcnn\tools\train_maskrcnn.py, 9777 , 2018-02-28
mx-maskrcnn-master\rcnn\tools\train_rpn.py, 9360 , 2018-02-28
mx-maskrcnn-master\rcnn\utils, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\utils\__init__.py, 0 , 2018-02-28
mx-maskrcnn-master\rcnn\utils\combine_model.py, 709 , 2018-02-28
mx-maskrcnn-master\rcnn\utils\load_data.py, 1718 , 2018-02-28
mx-maskrcnn-master\rcnn\utils\load_model.py, 1999 , 2018-02-28
mx-maskrcnn-master\rcnn\utils\save_model.py, 762 , 2018-02-28
mx-maskrcnn-master\scripts, 0 , 2018-02-28
mx-maskrcnn-master\scripts\demo.sh, 509 , 2018-02-28
mx-maskrcnn-master\scripts\demo_single_image.sh, 432 , 2018-02-28

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • SuperPixelMerge
    这是一个基于超像素算法的分割小软件,可以用于图像的分割,但是没有语义。使用者如果用于商用,要联系软件中的作者(This is a small software based on super-pixel algorithm, which can be used for image segmentation, but without semantics. Users for commercial use should contact the authors in the software.)
    2021-01-11 19:58:49下载
    积分:1
  • Locating-Voltage-Sags
    电压跌落是最严重的动态电能质量问题之一, 精确定位电压跌落起止时间是应对电压跌落问题的 重要前提和基础。由于电压采样信号往往有噪声分 量,现有的方法在定位电压跌落的起止时间时存在 局限性。本文提出利用多小波变换及相邻系数去噪 的电压跌落定位方法。多小波兼有对称性、正交性、 有限支撑性和二阶消失矩等优异的信号处理性能, 利用GHM多小波可以准确定位电压跌落起止时间。 多小波变换系数在每层之间具有对应关系,多小波 相邻系数将紧相邻的若干个系数作为一个整体来确 定阈值,考虑了系数之间的相关性,能获得更好的 去噪效果。通过 Matlab 进行仿真验证,仿真结果表 明,所提出的方法的正确性。 (Voltage sag is one of the most serious dynamic power quality problems. Critical start-time and end-time are important indices for voltage sags. But the sampling signals often have noisy component, the locations of start-time and end-time are hard to get. Wavelet is an effective tool for those non-stationary signal processing and has been used in this field. Local feature in the signal can be enlarged after the transformation using the scalar wavelet. But scalar wavelets cannot contain orthogonality, symmetry, compact support and higher order of vanishing moments simultaneously. In this thesis, multi-wavelets GHM is used to detect and locate power quality disturbances. Multi-wavelets offer many excellent properties such as the same approximation order but more compact support. The dependence of the multi-wavelets coefficients varies with the level, so neighboring coefficien)
    2014-03-25 17:08:50下载
    积分:1
  • 像去噪(matlab)
    说明:  使用中值,均值,小波,DCT,PCA五种方法实现对图像的去噪处理。(Five methods, median, mean, wavelet, DCT and PCA, are used to denoise the image.)
    2021-01-05 15:28:54下载
    积分:1
  • matlab_GUI_showing
    本例程通过matlab编写,显示一个GUI。在GUI中将输入到程序中的数据进行绘图。本例程能够实时进行绘图,并且可以将数据进行显示。同时还可以将输入到程序中的数据进行保存。在GUI中设置有控制开关,能够通过点击开关,将数据保存在不同的文本中便于后续处理使用。(This routine is written by matlab and displays a GUI. The data input into the program is drawn in the GUI. This routine can be plotted in real time and data can be displayed. At the same time, the data input into the program can also be saved. A control switch is set in the GUI, and the data can be saved in different texts by clicking the switch to facilitate subsequent processing.)
    2018-06-06 19:31:09下载
    积分:1
  • oao
    多分类问题的支持向量机源程序一对一方法 绝对可以运行(Multi-class SVM using One-Against-One decompositionoao)
    2009-03-09 10:33:03下载
    积分:1
  • fawltunique
    自己编写的粒子群优化算法,以计算一个函数的值作为测试,达到了良好的精度(The particle swarm optimization algorithm written by ourselves is designed to calculate the value of a function as a test, and good precision is achieved.)
    2018-09-05 23:02:58下载
    积分:1
  • facereganization
    人脸识别的实例,其中含有项目题目,解决方案以及实现程序和工具箱(Examples of face recognition, which contains the project topic, the solution as well as the implementation procedures and toolbox)
    2009-02-23 20:15:23下载
    积分:1
  • imagesegment
    此M文件主要利用区域生长和边缘检测进行图像分割(image segment by region grow )
    2010-01-20 11:35:17下载
    积分:1
  • PCA-Face-Recognition
    用matlab实现的pca算法,用于将维,适用于各种试验,如人脸识别程序(Using matlab realize the PCA algorithm is used to dimension, applicable to a variety of tests, procedures such as face recognition)
    2020-06-26 01:40:02下载
    积分:1
  • elastix-5.0.0
    说明:  词: 适用于医学图像配准的程序,可以设置不同参数配准(The program for medical image registration can set different parameters for registration)
    2020-11-28 13:29:30下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 31今日下载