登录
首页 » matlab » MFOA

MFOA

于 2020-06-16 发布 文件大小:3694KB
0 192
下载积分: 1 下载次数: 1

代码说明:

  基于CEC——2017benchmark测试集,计算最优 修正的果蝇算法,弥补原始果蝇算法在负数集上的缺失(modify fruit fly optimization)

文件列表:

cec17_func.cpp, 41819 , 2019-01-17
cec17_func.mexw64, 51712 , 2017-06-29
input_data, 0 , 2019-01-17
input_data\M_10_D10.txt, 2520 , 2016-09-04
input_data\M_10_D100.txt, 250200 , 2016-09-04
input_data\M_10_D2.txt, 104 , 2016-09-04
input_data\M_10_D20.txt, 10040 , 2016-09-04
input_data\M_10_D30.txt, 22560 , 2016-09-04
input_data\M_10_D50.txt, 62600 , 2016-09-04
input_data\M_11_D10.txt, 2520 , 2016-09-04
input_data\M_11_D100.txt, 250200 , 2016-09-04
input_data\M_11_D30.txt, 22560 , 2016-09-04
input_data\M_11_D50.txt, 62600 , 2016-09-04
input_data\M_12_D10.txt, 2520 , 2016-09-04
input_data\M_12_D100.txt, 250200 , 2016-09-04
input_data\M_12_D30.txt, 22560 , 2016-09-04
input_data\M_12_D50.txt, 62600 , 2016-09-04
input_data\M_13_D10.txt, 2520 , 2016-09-04
input_data\M_13_D100.txt, 250200 , 2016-09-04
input_data\M_13_D30.txt, 22560 , 2016-09-04
input_data\M_13_D50.txt, 62600 , 2016-09-04
input_data\M_14_D10.txt, 2520 , 2016-09-04
input_data\M_14_D100.txt, 250200 , 2016-09-04
input_data\M_14_D30.txt, 22560 , 2016-09-04
input_data\M_14_D50.txt, 62600 , 2016-09-04
input_data\M_15_D10.txt, 2520 , 2016-09-04
input_data\M_15_D100.txt, 250200 , 2016-09-04
input_data\M_15_D30.txt, 22560 , 2016-09-04
input_data\M_15_D50.txt, 62600 , 2016-09-04
input_data\M_16_D10.txt, 2520 , 2016-09-04
input_data\M_16_D100.txt, 250200 , 2016-09-04
input_data\M_16_D30.txt, 22560 , 2016-09-04
input_data\M_16_D50.txt, 62600 , 2016-09-04
input_data\M_17_D10.txt, 2520 , 2016-09-04
input_data\M_17_D100.txt, 250200 , 2016-09-04
input_data\M_17_D30.txt, 22560 , 2016-09-04
input_data\M_17_D50.txt, 62600 , 2016-09-04
input_data\M_18_D10.txt, 2520 , 2016-09-04
input_data\M_18_D100.txt, 250200 , 2016-09-04
input_data\M_18_D30.txt, 22560 , 2016-09-04
input_data\M_18_D50.txt, 62600 , 2016-09-04
input_data\M_19_D10.txt, 2520 , 2016-09-04
input_data\M_19_D100.txt, 250200 , 2016-09-04
input_data\M_19_D30.txt, 22560 , 2016-09-04
input_data\M_19_D50.txt, 62600 , 2016-09-04
input_data\M_1_D10.txt, 2520 , 2016-09-04
input_data\M_1_D100.txt, 250200 , 2016-09-04
input_data\M_1_D2.txt, 104 , 2016-09-04
input_data\M_1_D20.txt, 10040 , 2016-09-04
input_data\M_1_D30.txt, 22560 , 2016-09-04
input_data\M_1_D50.txt, 62600 , 2016-09-04
input_data\M_20_D10.txt, 2520 , 2016-09-04
input_data\M_20_D100.txt, 250200 , 2016-09-09
input_data\M_20_D20.txt, 10040 , 2016-09-04
input_data\M_20_D30.txt, 22560 , 2016-09-04
input_data\M_20_D50.txt, 62600 , 2016-09-04
input_data\M_21_D10.txt, 25200 , 2016-09-04
input_data\M_21_D100.txt, 2502000 , 2016-09-04
input_data\M_21_D2.txt, 832 , 2016-09-04
input_data\M_21_D20.txt, 100400 , 2016-09-04
input_data\M_21_D30.txt, 225600 , 2016-09-04
input_data\M_21_D50.txt, 626000 , 2016-09-04
input_data\M_22_D10.txt, 25200 , 2016-09-04
input_data\M_22_D100.txt, 2502000 , 2016-09-04
input_data\M_22_D2.txt, 832 , 2016-09-04
input_data\M_22_D20.txt, 100400 , 2016-09-04
input_data\M_22_D30.txt, 225600 , 2016-09-04
input_data\M_22_D50.txt, 626000 , 2016-09-04
input_data\M_23_D10.txt, 25200 , 2016-09-04
input_data\M_23_D100.txt, 2502000 , 2016-09-04
input_data\M_23_D2.txt, 832 , 2016-09-04
input_data\M_23_D20.txt, 100400 , 2016-09-04
input_data\M_23_D30.txt, 225600 , 2016-09-04
input_data\M_23_D50.txt, 626000 , 2016-09-04
input_data\M_24_D10.txt, 25200 , 2016-09-04
input_data\M_24_D100.txt, 2502000 , 2016-09-04
input_data\M_24_D2.txt, 832 , 2016-09-04
input_data\M_24_D20.txt, 100400 , 2016-09-04
input_data\M_24_D30.txt, 225600 , 2016-09-04
input_data\M_24_D50.txt, 626000 , 2016-09-04
input_data\M_25_D10.txt, 25200 , 2016-09-04
input_data\M_25_D100.txt, 2502000 , 2016-09-04
input_data\M_25_D2.txt, 832 , 2016-09-04
input_data\M_25_D20.txt, 100400 , 2016-09-04
input_data\M_25_D30.txt, 225600 , 2016-09-04
input_data\M_25_D50.txt, 626000 , 2016-09-04
input_data\M_26_D10.txt, 25200 , 2016-09-04
input_data\M_26_D100.txt, 2502000 , 2016-09-04
input_data\M_26_D2.txt, 832 , 2016-09-04
input_data\M_26_D20.txt, 100400 , 2016-09-04
input_data\M_26_D30.txt, 225600 , 2016-09-04
input_data\M_26_D50.txt, 626000 , 2016-09-04
input_data\M_27_D10.txt, 25200 , 2016-09-04
input_data\M_27_D100.txt, 2502000 , 2016-09-04
input_data\M_27_D2.txt, 832 , 2016-09-04
input_data\M_27_D20.txt, 100400 , 2016-09-04
input_data\M_27_D30.txt, 225600 , 2016-09-04
input_data\M_27_D50.txt, 626000 , 2016-09-04
input_data\M_28_D10.txt, 25200 , 2016-09-04
input_data\M_28_D100.txt, 2502000 , 2016-09-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • ALO
    matlab实现蚁狮优化(ALO)算法,用于最优化计算(Matlab implements ant lion optimization (ALO) algorithm for optimization calculation)
    2020-12-23 21:19:06下载
    积分:1
  • 智能微电网粒子群优
    说明:  含电动汽车的微电网的优化运行,用粒子群算法进行多目标优化(Multi-objective optimization is carried out by using particle swarm optimization algorithm (PSO) to optimize the operation of microgrid with electric vehicles)
    2021-04-26 12:08:45下载
    积分:1
  • Hybrid-GWOPSO-optimization
    说明:  灰狼算法和粒子群算法的结合,是两种种群算法的结合,值得一看(The combination of grey Wolf algorithm and particle swarm optimization is a combination of two population algorithms, which is worth a look)
    2021-04-23 02:18:48下载
    积分:1
  • NSGA-II
    说明:  求解多目标问题,业内最经典的多目标算法之一(to solve multi-object problem)
    2020-06-25 06:40:01下载
    积分:1
  • 基于人群搜索的函数优
    包含人群搜索算法源程序,和rastrigin、Schaffer和Spher三个函数的优化,并与PSO比较(Including the source program of crowd search algorithm, and the optimization of rastrigin, Schaffer and Sphere functions, and comparing with PSO)
    2019-06-27 01:37:39下载
    积分:1
  • yiqunsuanfa
    说明:  蚁群算法的一个函数寻优案例 带约束条件 可运行出来(A function optimization case of ant colony algorithm with constraints can be run out)
    2019-01-13 11:38:18下载
    积分:1
  • 例4.2
    说明:  基于遗传算法的稀步平面阵列,用于平面阵列的稀步优化。可以有效的减少平面阵列的阵元。从而降低阵列天线的成本。(The sparse step linear array based on genetic algorithm is used to optimize the sparse step linear array. It can effectively reduce the array elements of linear array.)
    2020-08-26 08:57:15下载
    积分:1
  • ALO
    说明:  蚁狮优化算法是一种群智能优化算法,调节参数少,易于实现。(Ant lion algorithm is a new meta heuristic swarm intelligence algorithm proposed by mirjalili in 2015)
    2021-02-17 09:47:37下载
    积分:1
  • 蚁群求解TSP问题程序
    说明:  蚁群算法求解TSP问题程序,代码简单明了,易于理解。(Ant colony algorithm for TSP)
    2020-07-07 14:50:25下载
    积分:1
  • group algorithm
    通过群算法(BSO和CSO),实现寻优的功能。(Through group algorithm (BSO and CSO), the optimization function is realized.)
    2019-05-12 13:13:14下载
    积分:1
  • 696518资源总数
  • 104226会员总数
  • 29今日下载