登录
首页 » matlab » 雷达matlab仿真,波束形成,角度测量,跟踪等等

雷达matlab仿真,波束形成,角度测量,跟踪等等

于 2021-02-19 发布 文件大小:363KB
0 297
下载积分: 1 下载次数: 13

代码说明:

  波形设计算法,阵列信号处理等相关知识的介绍仿真等(Introduction and Simulation of waveform design algorithm, array signal processing and other related knowledge)

文件列表:

23\angle_delta.m, 2196 , 2014-05-15
23\angle_k.m, 3591 , 2014-05-19
23\angle_k2.m, 1322 , 2014-04-21
23\data_Position_RMSE_5261942.xls, 16896 , 2014-05-26
23\data_Position_RMSE_5261945.xls, 16896 , 2014-05-26
23\data_Position_RMSE_5261946.xls, 16896 , 2014-05-26
23\data_Position_RMSE_5261953.xls, 108544 , 2014-05-26
23\data_Position_RMSE_526202.xls, 79872 , 1990-05-29
23\data_Position_RMSE_5291628.xls, 57856 , 2014-05-29
23\data_Position_RMSE_529165.xls, 57856 , 2014-05-29
23\data_Position_RMSE_731017.xls, 62976 , 2014-07-03
23\data_Position_RMSE_731714.xls, 62976 , 2014-07-04
23\data_Position_RMSE_741136.xls, 62976 , 2014-07-06
23\data_Position_RMSE_74842.xls, 62976 , 2014-07-04
23\data_SNR_RMSE.xls, 17920 , 2014-05-16
23\data_SNR_RMSE_0519.xls, 17920 , 2014-05-19
23\data_SNR_RMSE_0520.xls, 17920 , 2014-05-20
23\data_SNR_RMSE_0520_a.xls, 17920 , 2014-05-21
23\data_SNR_RMSE_0520_b.xls, 17920 , 2014-05-22
23\data_SNR_RMSE_52216.xls, 17920 , 2014-05-22
23\data_SNR_RMSE_52616.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261643.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261649.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261652.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261655.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261659.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261713.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261716.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261719.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526172.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261723.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261726.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261729.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261733.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261736.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261739.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261743.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261746.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261749.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261753.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261756.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261759.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526176.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526179.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261813.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261816.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261819.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5261823.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526183.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526186.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_526189.xls, 17920 , 2014-05-26
23\data_SNR_RMSE_5291713.xls, 17920 , 2014-05-29
23\data_SNR_RMSE_5291717.xls, 17920 , 2014-05-29
23\data_SNR_RMSE_5291725.xls, 17920 , 2014-05-29
23\dbf_test_1.mat, 451 , 2014-06-16
23\dbf_test_2.mat, 453 , 2014-06-16
23\dbf_test_3.mat, 452 , 2014-06-16
23\Echo_MIMO_PCM.m, 3714 , 2014-04-30
23\echo_pa_hf.m, 7554 , 2014-04-28
23\echo_pcm_static.m, 1786 , 2014-04-21
23\error_alphar2013.m, 5125 , 2014-06-16
23\error_alphat2013.m, 3312 , 2013-06-07
23\error_angle.m, 367 , 2013-06-02
23\error_d.m, 3963 , 2014-06-16
23\error_d2013.m, 6414 , 2014-04-09
23\error_v2013.m, 4177 , 2013-06-08
23\gen_base.m, 2497 , 2014-04-18
23\Gen_st_vector0506.m, 1725 , 2014-04-28
23\Gen_st_vector0524.m, 2123 , 2014-04-28
23\Gen_st_vector_cs.m, 2139 , 2014-05-14
23\hs_err_pid5552.log, 23348 , 1990-05-29
23\main_23.m, 57186 , 2014-06-16
23\main_23_0616.m, 60040 , 2014-07-04
23\matching10.m, 1198 , 2013-06-02
23\matching10_2013.m, 469 , 2014-05-13
23\monoPA.m, 1243 , 2014-05-30
23\monopulse_vec.m, 868 , 2014-05-15
23\multi_par.m, 3395 , 2014-05-30
23\mydata.xls, 17408 , 2014-04-30
23\papc-16-128.mat, 275 , 2013-06-02
23\papc-16-256.mat, 352 , 2013-04-18
23\rdbf.m, 1219 , 2014-06-16
23\rExtract1.m, 594 , 2014-06-16
23\rExtract2.m, 294 , 2013-06-02
23\rExtract20130526.m, 595 , 2013-06-07
23\sigma_thetar.m, 0 , 2014-05-20
23\SNR_RMSE0507.fig, 2702 , 2014-05-07
23\sypc-16-1024.mat, 3583 , 2013-06-02
23\sypc-16-2048.mat, 6959 , 2013-06-02
23\sypc-16-256.mat, 1060 , 2013-06-02
23\Target_Echo_PCM.m, 5266 , 2014-04-21
23\testdata2.xls, 16896 , 2014-04-30
23\transmit_2013.m, 2401 , 2014-05-14
23\t_mtd.m, 707 , 2014-06-16
23, 0 , 2014-07-06

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • python疫情可视化
    说明:  通过时事数据可视化系统,可以清楚地了解全球疫情分布的状况以及密度,以便做出相应的对策(Through the current affairs data visualization system, it is possible to clearly understand the distribution and density of the global epidemic in order to make corresponding countermeasures)
    2021-03-05 10:19:31下载
    积分:1
  • mlno
    一个833分酒问题的求解,C++编写,简单易读,输出最佳路径解,()
    2018-02-04 15:22:16下载
    积分:1
  • wcav
    Numerical Recipes Software 提供的算法子程序集,一共有上千种算法,部分算法可以在书店买到书()
    2018-05-24 17:49:06下载
    积分:1
  • 69491728rough-set-codes
    胡清华邻域粗糙集源码,matlab源代码,方便可用(Hu Qinghua neighborhood rough sets source code, matlab source code, easy to use)
    2021-04-23 09:08:48下载
    积分:1
  • 海杂波
    说明:  处理ipix官网下载的雷达原始数据,将方位角以及俯仰角进行处理(Processing radar raw data downloaded from IPIX official website)
    2021-04-14 09:38:55下载
    积分:1
  • hyglrpf
    零件切割问题 回溯算法的实现, 给定一块宽度为W的矩形板,矩形板的高度不受限制,现需要从板上分别切割出n个高度为hi,宽度()
    2018-03-15 11:17:34下载
    积分:1
  • sklearn-tree-BN-knn
    说明:  分类器的性能比较与调优: 使用scikit-learn 包中的tree,贝叶斯,knn,对数据进行模型训练,尽量了解其原理及运用。 使用不同分析三种分类器在实验中的性能比较,分析它们的特点。 本实验采用的数据集为house与segment。(Performance comparison and optimization of classifiers: We use tree, Bayesian and KNN in scikit-learnpackage to train the data model and try to understand its principle and application. The performances of three classifiers are compared and their characteristics are analyzed. The data set used in this experiment is house and segment.)
    2021-04-16 15:08:53下载
    积分:1
  • 机器学习实战
    说明:  机器学习实战中文英文pdf+数据集+代码(Practice of machine learning)
    2021-02-21 23:11:22下载
    积分:1
  • 一种信号的处理方法 SES
    说明:  一种信号的处理方法,用于非平稳的信号处理(A signal processing method for nonstationary signal processing)
    2020-07-13 08:18:52下载
    积分:1
  • python 实现随机森林
    应用背景 数据   :两个月之内 40000个客户的15个数据字段   包含客户的 地          理位置,职业,职级,年收入,。。。。。。    购买过得产品 目的:对新客户进行推荐一个适合该客户的产品, 对老客户推荐可能再购买的产品 数据处理    数据清洗:   describe 每个特征统计分析       方差     -分析缺陷特征和波动性                 空值赋值为  “-1 “              -  保证模型的可使用    数据归一化:eg:邮编 相似度不高 根据一线二线….进行划分  – 特征的重要性 关键技术特征选择    随机森林:  判断特征的重要性 :思考为何重要性高     AHP    :  迭代设置每个特征的权重 模型选择   :根据数据量数量,是否有标签,分类or回归选取 关于模型选择时候我想用协同过滤  但是不知道关于特征的协同过滤是怎么执行的   是每个特征都有一个评分构成评价矩阵么?
    2022-02-25 17:28:51下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 31今日下载