登录
首页 » matlab » Denoise-Methods

Denoise-Methods

于 2014-06-03 发布 文件大小:8185KB
0 158
下载积分: 1 下载次数: 93

代码说明:

  程序实现了三种去噪算法:BLS-GSM/BM3D/NLM,评价指标为PSNR/SSIM.(Program implements three de-noising algorithm: BLS-GSM/BM3D/NLM, with evaluation of PSNR/SSIM.)

文件列表:

Denoise Methods
...............\BLS-GSM
...............\.......\Added_PyrTools
...............\.......\..............\bound_extension.m,2255,2004-01-07
...............\.......\..............\buildWUpyr.m,1970,2004-10-14
...............\.......\..............\daubcqf.m,3918,2002-11-12
...............\.......\..............\expand.m,1083,2004-01-23
...............\.......\..............\mdwt.dll,8192,2004-03-02
...............\.......\..............\midwt.dll,8704,2004-03-02
...............\.......\..............\mirdwt.c,3196,2002-11-12
...............\.......\..............\mirdwt.dll,9216,2004-03-02
...............\.......\..............\mirdwt.m,5210,2002-11-12
...............\.......\..............\mirdwt.map,0,2009-10-09
...............\.......\..............\mirdwt.mexw32.manifest,616,2009-10-09
...............\.......\..............\mirdwt.obj,3922,2009-10-09
...............\.......\..............\mrdwt.c,2901,2002-11-12
...............\.......\..............\mrdwt.dll,8704,2004-03-02
...............\.......\..............\mrdwt.m,5068,2002-11-12
...............\.......\..............\mrdwt.map,0,2009-10-09
...............\.......\..............\mrdwt.mexw32.manifest,616,2009-10-09
...............\.......\..............\reconWUpyr.m,1682,2003-03-19
...............\.......\..............\shrink.m,977,2004-01-23
...............\.......\..............\snr.m,248,1996-12-09
...............\.......\change_log.txt,1250,2005-03-14
...............\.......\change_log.txt.$$$,1053,2005-02-23
...............\.......\denoising_subprograms
...............\.......\.....................\decomp_reconst.m,1833,2004-11-26
...............\.......\.....................\decomp_reconst_full.m,2463,2004-11-26
...............\.......\.....................\decomp_reconst_W.m,2666,2004-05-14
...............\.......\.....................\decomp_reconst_WU.m,2930,2005-02-23
...............\.......\.....................\denoi_BLS_GSM.m,6926,2005-03-14
...............\.......\.....................\denoi_BLS_GSM_band.m,7304,2004-10-14
...............\.......\denoi_demo.m,3513,2009-10-21
...............\.......\images
...............\.......\ReadMe.txt,7466,2005-02-23
...............\.......\Simoncelli_PyrTools
...............\.......\...................\htm" target=_blank>-MacReadMe,3145,1997-04-02
...............\.......\...................\.FBCIndex,258048,2003-03-14
...............\.......\...................\.FBCSemaphoreFile,6,2003-03-14
...............\.......\...................\.Parent,589,2001-08-22
...............\.......\...................\binomialFilter.m,327,1997-04-27
...............\.......\...................\blur.m,838,2004-06-10
...............\.......\...................\blurDn.m,1423,2004-06-10
...............\.......\...................\buildFullSFpyr2.m,3031,2002-04-06
...............\.......\...................\buildGpyr.m,2013,1998-04-17
...............\.......\...................\buildLpyr.m,2741,1998-04-17
...............\.......\...................\buildSCFpyr.m,2803,2004-10-15
...............\.......\...................\buildSCFpyrLevs.m,2260,2004-10-15
...............\.......\...................\buildSFpyr.m,3358,2004-10-15
...............\.......\...................\buildSFpyrLevs.m,1959,2002-08-29
...............\.......\...................\buildSpyr.m,2078,1998-04-17
...............\.......\...................\buildSpyrLevs.m,898,1997-05-02
...............\.......\...................\buildWpyr.m,2705,1998-04-17
...............\.......\...................\cconv2.m,1375,1997-04-27
...............\.......\...................\htm" target=_blank>ChangeLog,16057,2004-10-15
...............\.......\...................\clip.m,846,2002-10-02
...............\.......\...................\Contents.m,5822,2004-10-15
...............\.......\...................\convolve.c,10848,1997-09-07
...............\.......\...................\convolve.h,1918,1997-09-07
...............\.......\...................\convolve.map,0,2009-10-09
...............\.......\...................\convolve.mexw32.manifest,856,2009-10-09
...............\.......\...................\convolve.obj,13408,2009-10-09
...............\.......\...................\corrDn.c,4554,2002-10-02
...............\.......\...................\corrDn.c~,4693,2002-07-27
...............\.......\...................\corrDn.dll,49664,2001-02-15
...............\.......\...................\corrDn.m,2304,2001-03-28
...............\.......\...................\corrDn.map,0,2009-10-09
...............\.......\...................\corrDn.mex,53067,1997-09-24
...............\.......\...................\corrDn.mex4,140703,1998-04-27
...............\.......\...................\corrDn.mexglx,26678,2000-12-22
...............\.......\...................\corrDn.mexlx,22398,1998-04-27
...............\.......\...................\corrDn.mexmac,26224,2002-11-21
...............\.......\...................\corrDn.mexsol,29556,1998-04-27
...............\.......\...................\corrDn.mexw32.manifest,616,2009-10-09
...............\.......\...................\corrDn.µ,95744,1997-09-24
...............\.......\...................\corrDn.µ.rsrc,0,1997-09-24
...............\.......\...................\corrDn.π.4,0,1997-09-24
...............\.......\...................\edges-orig.c,16874,1997-08-26
...............\.......\...................\edges.c,22770,1997-08-30
...............\.......\...................\einstein.pgm,65596,1997-04-29
...............\.......\...................\entropy2.m,707,2001-12-01
...............\.......\...................\factorial.m,289,2002-12-17
...............\.......\...................\feynman.pgm,65597,2004-10-15
...............\.......\...................\histo.c,4253,2003-04-15
...............\.......\...................\histo.c~,4391,2002-07-27
...............\.......\...................\histo.dll,8192,2001-03-28
...............\.......\...................\histo.m,1893,2001-03-28
...............\.......\...................\histo.mex,2828,1997-09-24
...............\.......\...................\histo.mex4,14698,1998-04-27
...............\.......\...................\histo.mexglx,8934,2000-12-22
...............\.......\...................\histo.mexlx,6401,1998-04-27
...............\.......\...................\histo.mexmac,26068,2002-11-21
...............\.......\...................\histo.mexsol,7304,1998-04-27
...............\.......\...................\histo.µ,73980,1997-09-24
...............\.......\...................\histo.µ.rsrc,0,1997-09-24
...............\.......\...................\histo.π.4,0,1997-09-24
...............\.......\...................\histoMatch.m,893,1998-05-06
...............\.......\...................\ifftshift.m,422,1997-04-27
...............\.......\...................\imGradient.m,1344,2004-10-15
...............\.......\...................\imStats.m,1146,1997-08-22

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 倾斜矫正
    程序功能是把一副倾斜的文字图像矫正过来,通过边缘检测再进行霍夫变换完成(The program function is to correct a skewed text image.)
    2019-05-12 14:09:39下载
    积分:1
  • LBP1
    用lbp实现纹理特征提取,并分类说明: 一共有三个m文件,一个是lbp.m, 存放主要的lbp算法, 一个是getmapping,用以做算法的辅助函数, 一个是lbptest.m,存放着测试代码。 这三个文件需要放到同一个文件夹,并在文件夹中添加相应的图片, 具体的图片名字见lbptest.m的代码,运行lbptest.m可以查看结果。代码最后给出效果图 这三个文件是最传统的LBP方法,有256种。(With lbp achieve texture feature extraction and classification Description: A total of three m files, one is lbp.m, store the main lbp algorithm, One is getmapping, helper functions for doing arithmetic, One is lbptest.m, kept the test code. These three documents need to put the same folder, and add the appropriate folder, pictures, See lbptest.m specific name of the picture of the code, run lbptest.m can view the results. Finally renderings code These three documents are the most traditional LBP method, there are 256 kinds.)
    2013-10-21 17:09:14下载
    积分:1
  • projectcalib_self
    这是我们自己做的一套投影仪标定程序,反投影精度在1个象素之内(This is to do our own set of projector calibration procedures, back-projection at a pixel accuracy of)
    2009-03-22 14:33:36下载
    积分:1
  • DMDConnect-master
    DMD相机原理,单像素成像原理,压缩感知(The principle of DMD camera)
    2017-10-30 19:11:06下载
    积分:1
  • 大律阈值
    说明:  采用大津阈值法检测车道线,效果还可以,有需要的可以看看(Using the Dajin threshold method to detect the lane line, the effect is still good, you can see if you need it.)
    2019-03-27 21:08:43下载
    积分:1
  • 区域生长法
    区域生长法进行图像分割,通过选取合适的种子点,将感兴趣区域分割出来。(The region growing method is used for image segmentation, and the region of interest is segmented by selecting appropriate seed points.)
    2019-03-18 09:27:28下载
    积分:1
  • Color-transfer-between-images
    非常经典的彩色转移算法的原文及源代码,是学习彩色转移必须看的。(The text of the classic color transfer algorithm and the source code, is the study of color transfer must see it. )
    2013-09-28 16:19:42下载
    积分:1
  • NLMD
    说明:  利用非局部均值的算法对图像做去噪,速度比较快,但效果一般,存在一定局限性(Using non-local mean algorithm to denoise image is faster, but the effect is general and there are some limitations.)
    2020-08-18 09:08:22下载
    积分:1
  • shapecontext6
    形状上下文算法用于图像检索,程序中已运用了.mat文件存储图像库中的图像特征,检索效果很好。(shapecontext is used to realize imgage retrival,it shows very effective performance.)
    2011-07-11 13:46:54下载
    积分:1
  • gmm
    混合高斯模型使用K(基本为3到5个) 个高斯模型来表征图像中各个像素点的特征,在新一帧图像获得后更新混合高斯模型,用当前图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。通观整个高斯模型,他主要是有方差和均值两个参数决定,,对均值和方差的学习,采取不同的学习机制,将直接影响到模型的稳定性、精确性和收敛性。由于我们是对运动目标的背景提取建模,因此需要对高斯模型中方差和均值两个参数实时更新。为提高模型的学习能力,改进方法对均值和方差的更新采用不同的学习率 为提高在繁忙的场景下,大而慢的运动目标的检测效果,引入权值均值的概念,建立背景图像并实时更新,然后结合权值、权值均值和背景图像对像素点进行前景和背景的分类。(Gaussian mixture model using K (essentially 3-5) Gaussian model to characterize the features of each pixel in the image, in the image of the new frame for updated Gaussian mixture model, with each pixel in the image with a Gaussian mixture current model matching, if successful, determined that the point of the background points, otherwise the former attraction. Throughout the entire Gaussian model, he mainly has two parameters determine the variance and the mean, the mean and variance of the study, to take a different learning mechanism, will directly affect the stability, accuracy and convergence model. Since we are moving object extraction of the background modeling, so the need for the Gaussian model variance and mean two parameters real-time updates. In order to improve the learning ability of the model, an improved method for updating the mean and variance of different learning rates to improve in the busy scene, large and slow moving object detection results, the introduction of)
    2014-03-25 09:01:12下载
    积分:1
  • 696518资源总数
  • 104432会员总数
  • 16今日下载