-
wavlet
说明: matlab 实现小波图像去噪,自编程序非调用库函数(matlab implementation of wavelet image denoising, non-self-compiled programs call library functions)
- 2010-03-26 13:53:01下载
- 积分:1
-
手写识别
说明: 在matlab的gui中画出手写数字识别的gui(Draw the GUI of handwritten numeral recognition in the GUI of MATLAB)
- 2020-03-30 20:09:29下载
- 积分:1
-
ACO-edge-detection-master
说明: 利用蚁群算法对图片进行边缘检测,该方法速度较慢但是鲁棒性高(The ant colony algorithm is used to detect the edge of the image, which is slow but robust)
- 2019-12-02 16:35:33下载
- 积分:1
-
363657457
易语言图片按钮放大源码,易语言写的图形图像编程,很好的参考。(Easy language source code easy to picture button zoom, image language programming, a good reference.)
- 2013-09-17 10:26:35下载
- 积分:1
-
222171720920061213101744868886
使用 visual c++编写的基本的数字图像处理程序,(The use of visual c++ Prepared basic digital image processing procedures,)
- 2007-10-21 16:26:10下载
- 积分:1
-
opencv-fft2
灰度图像的二维傅里叶变换(cv_gray_fft2),二维傅里叶变换结果的幅值计算(cv_abs),频谱平移(cv_gray_fft2shift),将数值归一化到0到255区间(cv_range_0to255)是非常常用的四个功能!所以写成四个函数,方便将来调用!附运行截图~并附对应的MATLAB程序!(Dimensional Fourier transform of the grayscale image (cv_gray fft2), two-dimensional Fourier transform results to calculate the amplitude (cv_abs), spectral translation (cv_gray_fft2shift), the value normalized to range 0 to 255 (cv_range_0to255) is very common four function! so written as four function to facilitate future calls! attached run shot- along with the corresponding MATLAB program!)
- 2020-11-30 10:59:29下载
- 积分:1
-
lda_hash
以SIFT特征为目标输入,LDAHash方法进行降维实现目标识别(SIFT features input LDAHash method to reduce the dimensionality of the target recognition)
- 2021-01-01 18:28:58下载
- 积分:1
-
dftfilt
该函数可接受输入图像和一个滤波函数,可处理所有的滤波细节并输出经滤波和剪切的图像。(Performs frequency domian filterlying.)
- 2010-11-22 10:49:12下载
- 积分:1
-
峰值旁瓣比和积分旁瓣比
评估指标为点目标距离向和方位向峰值坐标、峰值旁瓣比、一维积分旁瓣比、剖面图(The evaluation indexes are peak coordinates, peak sidelobe ratio, one-dimensional integral sidelobe ratio and profile of point targets in range and azimuth directions.)
- 2021-03-30 17:49:09下载
- 积分:1
-
py-faster-rcnn-master
图像检测的算法,Faster R-CNN算法,先对整张图像进行卷积计算,然后通过感兴趣区域池化层(RoI Pooling Layer)将选择性搜索算法推荐出来的候选区域和卷积网络计算出的特征映射图进行融合,得到候选区域对应的特征矢量,这种共享卷积计算的操作极大地减少了卷积计算的次数。而且这些特征矢量的维度统一,方便后续的分类工作。通过感兴趣区域池化层处理卷积特征,并将得到的特征送往两个并行计算任务进行训练,分类和定位回归。通过这些方法和改进的框架,Fast R-CNN 用更短的训练和测试时长,取得了比 R-CNN 更好的效果(Faster R-CNN algorithm first convolutes the whole image, then fuses the candidate regions recommended by the selective search algorithm and the feature mapping maps calculated by the convolution network through the RoI Pooling Layer to get the corresponding feature vectors of the candidate regions, which greatly reduces the number of convolution calculations. Moreover, the dimension of these feature vectors is unified, which facilitates the subsequent classification work. The convolution feature is processed by the pooling layer of the region of interest, and the obtained feature is sent to two parallel computing tasks for training, classification and positioning regression. Through these methods and improved framework, Fast R-CNN uses shorter training and testing time and achieves better results than R-CNN.)
- 2020-12-11 15:39:18下载
- 积分:1