登录
首页 » Python » py-faster-rcnn-master

py-faster-rcnn-master

于 2020-12-11 发布 文件大小:654KB
0 166
下载积分: 1 下载次数: 14

代码说明:

  图像检测的算法,Faster R-CNN算法,先对整张图像进行卷积计算,然后通过感兴趣区域池化层(RoI Pooling Layer)将选择性搜索算法推荐出来的候选区域和卷积网络计算出的特征映射图进行融合,得到候选区域对应的特征矢量,这种共享卷积计算的操作极大地减少了卷积计算的次数。而且这些特征矢量的维度统一,方便后续的分类工作。通过感兴趣区域池化层处理卷积特征,并将得到的特征送往两个并行计算任务进行训练,分类和定位回归。通过这些方法和改进的框架,Fast R-CNN 用更短的训练和测试时长,取得了比 R-CNN 更好的效果(Faster R-CNN algorithm first convolutes the whole image, then fuses the candidate regions recommended by the selective search algorithm and the feature mapping maps calculated by the convolution network through the RoI Pooling Layer to get the corresponding feature vectors of the candidate regions, which greatly reduces the number of convolution calculations. Moreover, the dimension of these feature vectors is unified, which facilitates the subsequent classification work. The convolution feature is processed by the pooling layer of the region of interest, and the obtained feature is sent to two parallel computing tasks for training, classification and positioning regression. Through these methods and improved framework, Fast R-CNN uses shorter training and testing time and achieves better results than R-CNN.)

文件列表:

py-faster-rcnn-master\.gitignore, 84 , 2018-12-17
py-faster-rcnn-master\.gitmodules, 131 , 2018-12-17
py-faster-rcnn-master\data\.gitignore, 70 , 2018-12-17
py-faster-rcnn-master\data\demo\000456.jpg, 105302 , 2018-12-17
py-faster-rcnn-master\data\demo\000542.jpg, 115536 , 2018-12-17
py-faster-rcnn-master\data\demo\001150.jpg, 88635 , 2018-12-17
py-faster-rcnn-master\data\demo\001763.jpg, 73424 , 2018-12-17
py-faster-rcnn-master\data\demo\004545.jpg, 123072 , 2018-12-17
py-faster-rcnn-master\data\pylintrc, 56 , 2018-12-17
py-faster-rcnn-master\data\README.md, 2516 , 2018-12-17
py-faster-rcnn-master\data\scripts\fetch_faster_rcnn_models.sh, 842 , 2018-12-17
py-faster-rcnn-master\data\scripts\fetch_imagenet_models.sh, 825 , 2018-12-17
py-faster-rcnn-master\data\scripts\fetch_selective_search_data.sh, 858 , 2018-12-17
py-faster-rcnn-master\experiments\cfgs\faster_rcnn_alt_opt.yml, 78 , 2018-12-17
py-faster-rcnn-master\experiments\cfgs\faster_rcnn_end2end.yml, 227 , 2018-12-17
py-faster-rcnn-master\experiments\logs\.gitignore, 7 , 2018-12-17
py-faster-rcnn-master\experiments\README.md, 185 , 2018-12-17
py-faster-rcnn-master\experiments\scripts\faster_rcnn_alt_opt.sh, 1509 , 2018-12-17
py-faster-rcnn-master\experiments\scripts\faster_rcnn_end2end.sh, 1781 , 2018-12-17
py-faster-rcnn-master\experiments\scripts\fast_rcnn.sh, 1448 , 2018-12-17
py-faster-rcnn-master\lib\datasets\coco.py, 16560 , 2018-12-17
py-faster-rcnn-master\lib\datasets\ds_utils.py, 1336 , 2018-12-17
py-faster-rcnn-master\lib\datasets\factory.py, 1403 , 2018-12-17
py-faster-rcnn-master\lib\datasets\imdb.py, 9811 , 2018-12-17
py-faster-rcnn-master\lib\datasets\pascal_voc.py, 14217 , 2018-12-17
py-faster-rcnn-master\lib\datasets\tools\mcg_munge.py, 1451 , 2018-12-17
py-faster-rcnn-master\lib\datasets\VOCdevkit-matlab-wrapper\get_voc_opts.m, 231 , 2018-12-17
py-faster-rcnn-master\lib\datasets\VOCdevkit-matlab-wrapper\voc_eval.m, 1332 , 2018-12-17
py-faster-rcnn-master\lib\datasets\VOCdevkit-matlab-wrapper\xVOCap.m, 258 , 2018-12-17
py-faster-rcnn-master\lib\datasets\voc_eval.py, 6938 , 2018-12-17
py-faster-rcnn-master\lib\datasets\__init__.py, 248 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\bbox_transform.py, 2540 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\config.py, 9213 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\nms_wrapper.py, 642 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\test.py, 11120 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\train.py, 6076 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\__init__.py, 248 , 2018-12-17
py-faster-rcnn-master\lib\Makefile, 56 , 2018-12-17
py-faster-rcnn-master\lib\nms\.gitignore, 15 , 2018-12-17
py-faster-rcnn-master\lib\nms\cpu_nms.pyx, 2241 , 2018-12-17
py-faster-rcnn-master\lib\nms\gpu_nms.hpp, 146 , 2018-12-17
py-faster-rcnn-master\lib\nms\gpu_nms.pyx, 1110 , 2018-12-17
py-faster-rcnn-master\lib\nms\nms_kernel.cu, 5064 , 2018-12-17
py-faster-rcnn-master\lib\nms\py_cpu_nms.py, 1051 , 2018-12-17
py-faster-rcnn-master\lib\nms\__init__.py, 0 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\coco.py, 14881 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\cocoeval.py, 19735 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\license.txt, 1533 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\mask.py, 4058 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\maskApi.c, 7704 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\maskApi.h, 1928 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\UPSTREAM_REV, 80 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\_mask.pyx, 10709 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\__init__.py, 21 , 2018-12-17
py-faster-rcnn-master\lib\roi_data_layer\layer.py, 7450 , 2018-12-17
py-faster-rcnn-master\lib\roi_data_layer\minibatch.py, 8169 , 2018-12-17
py-faster-rcnn-master\lib\roi_data_layer\roidb.py, 5611 , 2018-12-17
py-faster-rcnn-master\lib\roi_data_layer\__init__.py, 248 , 2018-12-17
py-faster-rcnn-master\lib\rpn\anchor_target_layer.py, 11344 , 2018-12-17
py-faster-rcnn-master\lib\rpn\generate.py, 3894 , 2018-12-17
py-faster-rcnn-master\lib\rpn\generate_anchors.py, 3110 , 2018-12-17
py-faster-rcnn-master\lib\rpn\proposal_layer.py, 6803 , 2018-12-17
py-faster-rcnn-master\lib\rpn\proposal_target_layer.py, 7495 , 2018-12-17
py-faster-rcnn-master\lib\rpn\README.md, 780 , 2018-12-17
py-faster-rcnn-master\lib\rpn\__init__.py, 262 , 2018-12-17
py-faster-rcnn-master\lib\setup.py, 5665 , 2018-12-17
py-faster-rcnn-master\lib\transform\torch_image_transform_layer.py, 2000 , 2018-12-17
py-faster-rcnn-master\lib\transform\__init__.py, 0 , 2018-12-17
py-faster-rcnn-master\lib\utils\.gitignore, 9 , 2018-12-17
py-faster-rcnn-master\lib\utils\bbox.pyx, 1756 , 2018-12-17
py-faster-rcnn-master\lib\utils\blob.py, 1625 , 2018-12-17
py-faster-rcnn-master\lib\utils\timer.py, 948 , 2018-12-17
py-faster-rcnn-master\lib\utils\__init__.py, 248 , 2018-12-17
py-faster-rcnn-master\LICENSE, 3745 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\faster_rcnn_end2end\solver.prototxt, 387 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\faster_rcnn_end2end\test.prototxt, 8754 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\faster_rcnn_end2end\train.prototxt, 9840 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\fast_rcnn\solver.prototxt, 395 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\fast_rcnn\test.prototxt, 6774 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\fast_rcnn\train.prototxt, 6625 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\faster_rcnn_end2end\solver.prototxt, 392 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\faster_rcnn_end2end\test.prototxt, 6973 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\faster_rcnn_end2end\train(1).prototxt, 7282 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\fast_rcnn\solver.prototxt, 398 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\fast_rcnn\test.prototxt, 4037 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\fast_rcnn\train.prototxt, 4051 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\faster_rcnn_test.pt, 6263 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\rpn_test.pt, 5305 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage1_fast_rcnn_solver30k40k.pt, 390 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage1_fast_rcnn_train.pt, 8241 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage1_rpn_solver60k80k.pt, 378 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage1_rpn_train.pt, 8062 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage2_fast_rcnn_solver30k40k.pt, 390 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage2_fast_rcnn_train.pt, 8337 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage2_rpn_solver60k80k.pt, 378 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage2_rpn_train.pt, 8126 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_end2end\solver.prototxt, 407 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_end2end\test.prototxt, 8945 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_end2end\train.prototxt, 10209 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\fast_rcnn\solver.prototxt, 400 , 2018-12-17

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • wavelet-image-fusion
    小波方法的多焦点图像融合,用的融合规则为Yong Yang:A Novel DWT Based Multi-focus Image Fusion Method的方法(Wavelet method for multi-focus image fusion, the fusion rules: A Novel DWT Based Multi-focus Image Fusion Method method Yong Yang,)
    2012-12-08 22:20:40下载
    积分:1
  • retinex
    说明:  基于retinex理论的图象增强处理,一种新型的算法,效果挺好(Image enhancement based on Retinex theory, a new algorithm, has a good effect)
    2020-10-15 11:26:04下载
    积分:1
  • SparseLab200-Core
    基于多帧图像插值(Interpolation)技术的方法是SR恢复技术当中最直观 的方法。这类方法首先估计各帧图像之间的相对运动信息,获得HR图像在非均 匀间距采样点上的象素值,接着通过非均匀插值得到HR栅格上的象素值,最后 采用图像恢复技术来去除模糊和降低噪声(运动估计!非均匀插值!去模糊和 噪声)。(In this paper, we propose a novel method for solv- ing single-image super-resolution problems. Given a low-resolution image as input, we recover its high- resolution counterpart using a set of training exam- ples. While this formulation resembles other learning- based methods for super-resolution, our method has been inspired by recent manifold learning methods, par- ticularly locally linear embedding (LLE). Speci?cally, small image patches in the low- and high-resolution images form manifolds with similar local geometry in two distinct feature spaces. As in LLE, local geometry is characterized by how a feature vector correspond- ing to a patch can be reconstructed by its neighbors in the feature space. Besides using the training image pairs to estimate the high-resolution embedding, we also enforce local compatibility and smoothness con- straints between patches in the target high-resolution image through overlapping. Experiments show that our method is very ?exible )
    2010-11-07 11:15:03下载
    积分:1
  • ImageMatching_MATLAB
    说明:  这是一个图像配准的MATLAB代码,有很好的GUI界面,以像素级进行配准。(The image matching MATLAB code is based on pixel with a good GHI.)
    2010-03-16 20:30:29下载
    积分:1
  • image_fusion
    本程序集合了互信息配准,PV差值,powell算法,基于小波变换的图像融合的一整套算法。只需要在GUI界面输入两幅图像,即可自动完成图像的配准融合。程序包含Matlab源代码。用Matlab打开imagefusion.m,即会弹出gui界面。融合前要输入参考和浮动图像。图像要求像素的 长*宽 一样。否则会报错。程序只能处理灰度图像,彩色图像也会转化成灰度图像处理。程序代码已经有详细的注释,方便读者理解。(The procedures set of mutual information, PV difference, powell algorithm, based on wavelet transform image fusion set of algorithms. Only need to enter the two images in the GUI interface, you can automatically complete the image registration fusion. Program contains Matlab source code. Using Matlab open imagefusion.m, gui interface will pop up. Fusion before the input reference and floating images. Image requires the same pixel length* width. Otherwise incorrect. Can only handle grayscale images, color images into gray image processing also. Program code has detailed notes, to facilitate understanding.)
    2020-06-30 09:40:02下载
    积分:1
  • nonmaxsup
    CANNY算子的非极大值抑制步骤,使用插值计算,支持不同的抑制半径(Non-maxima suppression step CANNY Operators using interpolation, support different radii suppression)
    2016-05-19 11:38:16下载
    积分:1
  • graycomatrix
    用MATLAB编写的灰度共生矩阵程序代码(matlab gravt level co-occurence matrix)
    2009-03-05 10:57:01下载
    积分:1
  • matlab-phase-unwrapping
    代码为matlab源程序,主要功能是对干涉SAR数据进行相位解缠。(Matlab source code, the main function is to phase unwrapping interferometric SAR data.)
    2012-12-11 15:26:47下载
    积分:1
  • Mser 区域检测器 mser
    说明:  implementation of mser region detector
    2020-03-23 19:27:38下载
    积分:1
  • cfar
    说明:  CA-CFAR的仿真程序,对初学者十分友好。(The simulation program of CA-CFAR is very friendly to beginners.)
    2019-05-10 09:44:39下载
    积分:1
  • 696518资源总数
  • 104349会员总数
  • 32今日下载