登录
首页 » Python » py-faster-rcnn-master

py-faster-rcnn-master

于 2020-12-11 发布 文件大小:654KB
0 249
下载积分: 1 下载次数: 14

代码说明:

  图像检测的算法,Faster R-CNN算法,先对整张图像进行卷积计算,然后通过感兴趣区域池化层(RoI Pooling Layer)将选择性搜索算法推荐出来的候选区域和卷积网络计算出的特征映射图进行融合,得到候选区域对应的特征矢量,这种共享卷积计算的操作极大地减少了卷积计算的次数。而且这些特征矢量的维度统一,方便后续的分类工作。通过感兴趣区域池化层处理卷积特征,并将得到的特征送往两个并行计算任务进行训练,分类和定位回归。通过这些方法和改进的框架,Fast R-CNN 用更短的训练和测试时长,取得了比 R-CNN 更好的效果(Faster R-CNN algorithm first convolutes the whole image, then fuses the candidate regions recommended by the selective search algorithm and the feature mapping maps calculated by the convolution network through the RoI Pooling Layer to get the corresponding feature vectors of the candidate regions, which greatly reduces the number of convolution calculations. Moreover, the dimension of these feature vectors is unified, which facilitates the subsequent classification work. The convolution feature is processed by the pooling layer of the region of interest, and the obtained feature is sent to two parallel computing tasks for training, classification and positioning regression. Through these methods and improved framework, Fast R-CNN uses shorter training and testing time and achieves better results than R-CNN.)

文件列表:

py-faster-rcnn-master\.gitignore, 84 , 2018-12-17
py-faster-rcnn-master\.gitmodules, 131 , 2018-12-17
py-faster-rcnn-master\data\.gitignore, 70 , 2018-12-17
py-faster-rcnn-master\data\demo\000456.jpg, 105302 , 2018-12-17
py-faster-rcnn-master\data\demo\000542.jpg, 115536 , 2018-12-17
py-faster-rcnn-master\data\demo\001150.jpg, 88635 , 2018-12-17
py-faster-rcnn-master\data\demo\001763.jpg, 73424 , 2018-12-17
py-faster-rcnn-master\data\demo\004545.jpg, 123072 , 2018-12-17
py-faster-rcnn-master\data\pylintrc, 56 , 2018-12-17
py-faster-rcnn-master\data\README.md, 2516 , 2018-12-17
py-faster-rcnn-master\data\scripts\fetch_faster_rcnn_models.sh, 842 , 2018-12-17
py-faster-rcnn-master\data\scripts\fetch_imagenet_models.sh, 825 , 2018-12-17
py-faster-rcnn-master\data\scripts\fetch_selective_search_data.sh, 858 , 2018-12-17
py-faster-rcnn-master\experiments\cfgs\faster_rcnn_alt_opt.yml, 78 , 2018-12-17
py-faster-rcnn-master\experiments\cfgs\faster_rcnn_end2end.yml, 227 , 2018-12-17
py-faster-rcnn-master\experiments\logs\.gitignore, 7 , 2018-12-17
py-faster-rcnn-master\experiments\README.md, 185 , 2018-12-17
py-faster-rcnn-master\experiments\scripts\faster_rcnn_alt_opt.sh, 1509 , 2018-12-17
py-faster-rcnn-master\experiments\scripts\faster_rcnn_end2end.sh, 1781 , 2018-12-17
py-faster-rcnn-master\experiments\scripts\fast_rcnn.sh, 1448 , 2018-12-17
py-faster-rcnn-master\lib\datasets\coco.py, 16560 , 2018-12-17
py-faster-rcnn-master\lib\datasets\ds_utils.py, 1336 , 2018-12-17
py-faster-rcnn-master\lib\datasets\factory.py, 1403 , 2018-12-17
py-faster-rcnn-master\lib\datasets\imdb.py, 9811 , 2018-12-17
py-faster-rcnn-master\lib\datasets\pascal_voc.py, 14217 , 2018-12-17
py-faster-rcnn-master\lib\datasets\tools\mcg_munge.py, 1451 , 2018-12-17
py-faster-rcnn-master\lib\datasets\VOCdevkit-matlab-wrapper\get_voc_opts.m, 231 , 2018-12-17
py-faster-rcnn-master\lib\datasets\VOCdevkit-matlab-wrapper\voc_eval.m, 1332 , 2018-12-17
py-faster-rcnn-master\lib\datasets\VOCdevkit-matlab-wrapper\xVOCap.m, 258 , 2018-12-17
py-faster-rcnn-master\lib\datasets\voc_eval.py, 6938 , 2018-12-17
py-faster-rcnn-master\lib\datasets\__init__.py, 248 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\bbox_transform.py, 2540 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\config.py, 9213 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\nms_wrapper.py, 642 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\test.py, 11120 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\train.py, 6076 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\__init__.py, 248 , 2018-12-17
py-faster-rcnn-master\lib\Makefile, 56 , 2018-12-17
py-faster-rcnn-master\lib\nms\.gitignore, 15 , 2018-12-17
py-faster-rcnn-master\lib\nms\cpu_nms.pyx, 2241 , 2018-12-17
py-faster-rcnn-master\lib\nms\gpu_nms.hpp, 146 , 2018-12-17
py-faster-rcnn-master\lib\nms\gpu_nms.pyx, 1110 , 2018-12-17
py-faster-rcnn-master\lib\nms\nms_kernel.cu, 5064 , 2018-12-17
py-faster-rcnn-master\lib\nms\py_cpu_nms.py, 1051 , 2018-12-17
py-faster-rcnn-master\lib\nms\__init__.py, 0 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\coco.py, 14881 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\cocoeval.py, 19735 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\license.txt, 1533 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\mask.py, 4058 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\maskApi.c, 7704 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\maskApi.h, 1928 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\UPSTREAM_REV, 80 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\_mask.pyx, 10709 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\__init__.py, 21 , 2018-12-17
py-faster-rcnn-master\lib\roi_data_layer\layer.py, 7450 , 2018-12-17
py-faster-rcnn-master\lib\roi_data_layer\minibatch.py, 8169 , 2018-12-17
py-faster-rcnn-master\lib\roi_data_layer\roidb.py, 5611 , 2018-12-17
py-faster-rcnn-master\lib\roi_data_layer\__init__.py, 248 , 2018-12-17
py-faster-rcnn-master\lib\rpn\anchor_target_layer.py, 11344 , 2018-12-17
py-faster-rcnn-master\lib\rpn\generate.py, 3894 , 2018-12-17
py-faster-rcnn-master\lib\rpn\generate_anchors.py, 3110 , 2018-12-17
py-faster-rcnn-master\lib\rpn\proposal_layer.py, 6803 , 2018-12-17
py-faster-rcnn-master\lib\rpn\proposal_target_layer.py, 7495 , 2018-12-17
py-faster-rcnn-master\lib\rpn\README.md, 780 , 2018-12-17
py-faster-rcnn-master\lib\rpn\__init__.py, 262 , 2018-12-17
py-faster-rcnn-master\lib\setup.py, 5665 , 2018-12-17
py-faster-rcnn-master\lib\transform\torch_image_transform_layer.py, 2000 , 2018-12-17
py-faster-rcnn-master\lib\transform\__init__.py, 0 , 2018-12-17
py-faster-rcnn-master\lib\utils\.gitignore, 9 , 2018-12-17
py-faster-rcnn-master\lib\utils\bbox.pyx, 1756 , 2018-12-17
py-faster-rcnn-master\lib\utils\blob.py, 1625 , 2018-12-17
py-faster-rcnn-master\lib\utils\timer.py, 948 , 2018-12-17
py-faster-rcnn-master\lib\utils\__init__.py, 248 , 2018-12-17
py-faster-rcnn-master\LICENSE, 3745 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\faster_rcnn_end2end\solver.prototxt, 387 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\faster_rcnn_end2end\test.prototxt, 8754 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\faster_rcnn_end2end\train.prototxt, 9840 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\fast_rcnn\solver.prototxt, 395 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\fast_rcnn\test.prototxt, 6774 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\fast_rcnn\train.prototxt, 6625 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\faster_rcnn_end2end\solver.prototxt, 392 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\faster_rcnn_end2end\test.prototxt, 6973 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\faster_rcnn_end2end\train(1).prototxt, 7282 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\fast_rcnn\solver.prototxt, 398 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\fast_rcnn\test.prototxt, 4037 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\fast_rcnn\train.prototxt, 4051 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\faster_rcnn_test.pt, 6263 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\rpn_test.pt, 5305 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage1_fast_rcnn_solver30k40k.pt, 390 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage1_fast_rcnn_train.pt, 8241 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage1_rpn_solver60k80k.pt, 378 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage1_rpn_train.pt, 8062 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage2_fast_rcnn_solver30k40k.pt, 390 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage2_fast_rcnn_train.pt, 8337 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage2_rpn_solver60k80k.pt, 378 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage2_rpn_train.pt, 8126 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_end2end\solver.prototxt, 407 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_end2end\test.prototxt, 8945 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_end2end\train.prototxt, 10209 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\fast_rcnn\solver.prototxt, 400 , 2018-12-17

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • huffman
    对图像进行哈夫曼编码并且能够解码,可以在命令行中选择图像地址(Huffman encoding and decoding of images)
    2019-04-08 20:49:14下载
    积分:1
  • roadExtraction-master
    针对高分辨率遥感图像进行的道路提取,效果还行。(The road extraction for high resolution remote sensing images is good.)
    2021-03-12 18:39:25下载
    积分:1
  • ms_ssim
    Multi-Scale Structural Similarity Index (MS-SSIM). Download here. Please cite the following paper in any published work if you use this software. Z. Wang, E. P. Simoncelli and A. C. Bovik, "Multi-scale structural similarity for image quality assessment," IEEE Asilomar Conference Signals, Systems and Computers, Nov. 2003.
    2010-03-02 01:50:24下载
    积分:1
  • Vehicle_Detection
    该文件使用特征点提取-图像匹配-图像剪影三部,精确检测车辆或运动物体。(the documents Feature Extraction-Image Matching- Image Capture 3, accurate detection of vehicles or moving objects.)
    2007-01-24 22:41:02下载
    积分:1
  • Epilepsy-EEG-report---
    在学习了数字信号处理、信号与系统、建模与仿真及其医学应用等课程的基础上, 学习一类典型的生物医学信号--脑电的测取、FFT 频谱分析、以及应用数字滤波方法提 取脑电的频带(8-13Hz)信号及其特性分析。(Epilepsy section of the brain wave extraction and analysis of characteristics of the course design report )
    2011-11-14 12:54:00下载
    积分:1
  • Max_CCM
    用于图像配准,角点提取后采用相关系数法进行特征匹配(For image registration, corner detection using correlation coefficient method after the feature matching)
    2010-05-12 18:32:24下载
    积分:1
  • Matlab_image_processing
    主要是用matlab进行图像增强对比度的处理,采用的方法是灰度拉伸(Is mainly used for image enhancement matlab contrast processing, the method used is the gray-scale tensile)
    2009-01-09 14:24:59下载
    积分:1
  • criminis-inpainting
    说明:  matlab实现图像修复,基于样本块的纹理修复算法Criminis(MATLAB image inpainting, texture inpainting algorithm criminis based on sample block)
    2021-04-10 00:51:13下载
    积分:1
  • diskreet.m
    DISKREET: FOR CHANGING DISKREET LEVEL OF AN IMAGE
    2013-10-31 01:52:21下载
    积分:1
  • spa
    连续投影算法选出最优波段,一般是选出光谱图形的最优波段(Successive projection algorithm chooses the optimal band, typically selected spectral graph of the optimal band)
    2020-12-17 19:59:11下载
    积分:1
  • 696518资源总数
  • 106259会员总数
  • 28今日下载