登录
首页 » Python » py-faster-rcnn-master

py-faster-rcnn-master

于 2020-12-11 发布 文件大小:654KB
0 169
下载积分: 1 下载次数: 14

代码说明:

  图像检测的算法,Faster R-CNN算法,先对整张图像进行卷积计算,然后通过感兴趣区域池化层(RoI Pooling Layer)将选择性搜索算法推荐出来的候选区域和卷积网络计算出的特征映射图进行融合,得到候选区域对应的特征矢量,这种共享卷积计算的操作极大地减少了卷积计算的次数。而且这些特征矢量的维度统一,方便后续的分类工作。通过感兴趣区域池化层处理卷积特征,并将得到的特征送往两个并行计算任务进行训练,分类和定位回归。通过这些方法和改进的框架,Fast R-CNN 用更短的训练和测试时长,取得了比 R-CNN 更好的效果(Faster R-CNN algorithm first convolutes the whole image, then fuses the candidate regions recommended by the selective search algorithm and the feature mapping maps calculated by the convolution network through the RoI Pooling Layer to get the corresponding feature vectors of the candidate regions, which greatly reduces the number of convolution calculations. Moreover, the dimension of these feature vectors is unified, which facilitates the subsequent classification work. The convolution feature is processed by the pooling layer of the region of interest, and the obtained feature is sent to two parallel computing tasks for training, classification and positioning regression. Through these methods and improved framework, Fast R-CNN uses shorter training and testing time and achieves better results than R-CNN.)

文件列表:

py-faster-rcnn-master\.gitignore, 84 , 2018-12-17
py-faster-rcnn-master\.gitmodules, 131 , 2018-12-17
py-faster-rcnn-master\data\.gitignore, 70 , 2018-12-17
py-faster-rcnn-master\data\demo\000456.jpg, 105302 , 2018-12-17
py-faster-rcnn-master\data\demo\000542.jpg, 115536 , 2018-12-17
py-faster-rcnn-master\data\demo\001150.jpg, 88635 , 2018-12-17
py-faster-rcnn-master\data\demo\001763.jpg, 73424 , 2018-12-17
py-faster-rcnn-master\data\demo\004545.jpg, 123072 , 2018-12-17
py-faster-rcnn-master\data\pylintrc, 56 , 2018-12-17
py-faster-rcnn-master\data\README.md, 2516 , 2018-12-17
py-faster-rcnn-master\data\scripts\fetch_faster_rcnn_models.sh, 842 , 2018-12-17
py-faster-rcnn-master\data\scripts\fetch_imagenet_models.sh, 825 , 2018-12-17
py-faster-rcnn-master\data\scripts\fetch_selective_search_data.sh, 858 , 2018-12-17
py-faster-rcnn-master\experiments\cfgs\faster_rcnn_alt_opt.yml, 78 , 2018-12-17
py-faster-rcnn-master\experiments\cfgs\faster_rcnn_end2end.yml, 227 , 2018-12-17
py-faster-rcnn-master\experiments\logs\.gitignore, 7 , 2018-12-17
py-faster-rcnn-master\experiments\README.md, 185 , 2018-12-17
py-faster-rcnn-master\experiments\scripts\faster_rcnn_alt_opt.sh, 1509 , 2018-12-17
py-faster-rcnn-master\experiments\scripts\faster_rcnn_end2end.sh, 1781 , 2018-12-17
py-faster-rcnn-master\experiments\scripts\fast_rcnn.sh, 1448 , 2018-12-17
py-faster-rcnn-master\lib\datasets\coco.py, 16560 , 2018-12-17
py-faster-rcnn-master\lib\datasets\ds_utils.py, 1336 , 2018-12-17
py-faster-rcnn-master\lib\datasets\factory.py, 1403 , 2018-12-17
py-faster-rcnn-master\lib\datasets\imdb.py, 9811 , 2018-12-17
py-faster-rcnn-master\lib\datasets\pascal_voc.py, 14217 , 2018-12-17
py-faster-rcnn-master\lib\datasets\tools\mcg_munge.py, 1451 , 2018-12-17
py-faster-rcnn-master\lib\datasets\VOCdevkit-matlab-wrapper\get_voc_opts.m, 231 , 2018-12-17
py-faster-rcnn-master\lib\datasets\VOCdevkit-matlab-wrapper\voc_eval.m, 1332 , 2018-12-17
py-faster-rcnn-master\lib\datasets\VOCdevkit-matlab-wrapper\xVOCap.m, 258 , 2018-12-17
py-faster-rcnn-master\lib\datasets\voc_eval.py, 6938 , 2018-12-17
py-faster-rcnn-master\lib\datasets\__init__.py, 248 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\bbox_transform.py, 2540 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\config.py, 9213 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\nms_wrapper.py, 642 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\test.py, 11120 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\train.py, 6076 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\__init__.py, 248 , 2018-12-17
py-faster-rcnn-master\lib\Makefile, 56 , 2018-12-17
py-faster-rcnn-master\lib\nms\.gitignore, 15 , 2018-12-17
py-faster-rcnn-master\lib\nms\cpu_nms.pyx, 2241 , 2018-12-17
py-faster-rcnn-master\lib\nms\gpu_nms.hpp, 146 , 2018-12-17
py-faster-rcnn-master\lib\nms\gpu_nms.pyx, 1110 , 2018-12-17
py-faster-rcnn-master\lib\nms\nms_kernel.cu, 5064 , 2018-12-17
py-faster-rcnn-master\lib\nms\py_cpu_nms.py, 1051 , 2018-12-17
py-faster-rcnn-master\lib\nms\__init__.py, 0 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\coco.py, 14881 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\cocoeval.py, 19735 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\license.txt, 1533 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\mask.py, 4058 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\maskApi.c, 7704 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\maskApi.h, 1928 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\UPSTREAM_REV, 80 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\_mask.pyx, 10709 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\__init__.py, 21 , 2018-12-17
py-faster-rcnn-master\lib\roi_data_layer\layer.py, 7450 , 2018-12-17
py-faster-rcnn-master\lib\roi_data_layer\minibatch.py, 8169 , 2018-12-17
py-faster-rcnn-master\lib\roi_data_layer\roidb.py, 5611 , 2018-12-17
py-faster-rcnn-master\lib\roi_data_layer\__init__.py, 248 , 2018-12-17
py-faster-rcnn-master\lib\rpn\anchor_target_layer.py, 11344 , 2018-12-17
py-faster-rcnn-master\lib\rpn\generate.py, 3894 , 2018-12-17
py-faster-rcnn-master\lib\rpn\generate_anchors.py, 3110 , 2018-12-17
py-faster-rcnn-master\lib\rpn\proposal_layer.py, 6803 , 2018-12-17
py-faster-rcnn-master\lib\rpn\proposal_target_layer.py, 7495 , 2018-12-17
py-faster-rcnn-master\lib\rpn\README.md, 780 , 2018-12-17
py-faster-rcnn-master\lib\rpn\__init__.py, 262 , 2018-12-17
py-faster-rcnn-master\lib\setup.py, 5665 , 2018-12-17
py-faster-rcnn-master\lib\transform\torch_image_transform_layer.py, 2000 , 2018-12-17
py-faster-rcnn-master\lib\transform\__init__.py, 0 , 2018-12-17
py-faster-rcnn-master\lib\utils\.gitignore, 9 , 2018-12-17
py-faster-rcnn-master\lib\utils\bbox.pyx, 1756 , 2018-12-17
py-faster-rcnn-master\lib\utils\blob.py, 1625 , 2018-12-17
py-faster-rcnn-master\lib\utils\timer.py, 948 , 2018-12-17
py-faster-rcnn-master\lib\utils\__init__.py, 248 , 2018-12-17
py-faster-rcnn-master\LICENSE, 3745 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\faster_rcnn_end2end\solver.prototxt, 387 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\faster_rcnn_end2end\test.prototxt, 8754 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\faster_rcnn_end2end\train.prototxt, 9840 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\fast_rcnn\solver.prototxt, 395 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\fast_rcnn\test.prototxt, 6774 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\fast_rcnn\train.prototxt, 6625 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\faster_rcnn_end2end\solver.prototxt, 392 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\faster_rcnn_end2end\test.prototxt, 6973 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\faster_rcnn_end2end\train(1).prototxt, 7282 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\fast_rcnn\solver.prototxt, 398 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\fast_rcnn\test.prototxt, 4037 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\fast_rcnn\train.prototxt, 4051 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\faster_rcnn_test.pt, 6263 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\rpn_test.pt, 5305 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage1_fast_rcnn_solver30k40k.pt, 390 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage1_fast_rcnn_train.pt, 8241 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage1_rpn_solver60k80k.pt, 378 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage1_rpn_train.pt, 8062 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage2_fast_rcnn_solver30k40k.pt, 390 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage2_fast_rcnn_train.pt, 8337 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage2_rpn_solver60k80k.pt, 378 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage2_rpn_train.pt, 8126 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_end2end\solver.prototxt, 407 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_end2end\test.prototxt, 8945 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_end2end\train.prototxt, 10209 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\fast_rcnn\solver.prototxt, 400 , 2018-12-17

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Gimp-trainning
    Gimp trainning 图形处理教程,适合自学者(Gimp trainning graphics)
    2011-09-30 20:30:38下载
    积分:1
  • AutomaticImageDeWeatheringUsingCurveletBasedanishi
    说明:  用曲波变换点边缘检测实现自动恢复受天气影响的图像(Qu Bo transformation point with edge detection for automatic restoration of images affected by the adverse weather)
    2008-11-17 14:02:07下载
    积分:1
  • TEST
    四步相移 多频外差 的matlab 理论演示(Four-step phase shift matlab theory demonstrates that multi-frequency heterodyne)
    2013-04-09 17:24:02下载
    积分:1
  • SRCNN-Tensorflow
    SRCNN Superresolution imteplated by tensorflow SRCNN tensorflow 实现(SRCNN Superresolution imteplated by tensorflow)
    2020-11-28 11:19:30下载
    积分:1
  • python编写卷积结构
    说明:  使用python语言编写卷积神经网络的卷积结构。(The convolution structure of convolution neural network is written in Python language.)
    2020-11-30 13:52:49下载
    积分:1
  • dwtwatermark
    基于dwt的数字图像水印技术的matlab源代码。包括嵌入和提取,效果不错。(Dwt-based digital image watermarking technique matlab source code. Including the embedding and extraction, good results.)
    2021-02-07 18:29:55下载
    积分:1
  • matlab
    可以进行图象处理,一些简单变化,使用范围比较广泛(it can change image)
    2010-06-27 01:19:11下载
    积分:1
  • matlabCV
    一些图象处理及机器视觉的matlib工具,例程,有ransac算法,求单应矩阵等等。(some image processing and machine vision matlib tools, routines, ransac algorithm, should seek single matrix, and so on.)
    2007-06-13 21:24:33下载
    积分:1
  • Visual-C-MATLAB-image-processing
    本书系统地介绍了图像处理与识别的基本原理、典型方法和实用技术。全书共分12章,第1章~第6章是图像处理与识别的基础内容,包括图像科学综述、MATLAB语言图像编程、图像增强、图像分割、图像特征提取和图像识别;第7章~第10章是图像处理与识别的工程实例,涵盖了医学图像处理、文字识别和自导引小车路径识别等应用实例,并结合理论算法,提供了大量MATLAB代码程序,以帮助读者掌握如何使用MATLAB语言快速进行算法的仿真、调试和估计等方法。第11章~第12章,是两个综合性较强的实例,分别是Visual C++实现的基于神经网络的文字识别系统和车牌定位系统。 本书附带的光盘给出了各个章节列举的实例的源代码,同时赠送了28个常用数字图像处理算法的Visual C++代码实现。 本书讲解深入浅出,实例程序丰富,注重理论与实践相结合。本书可作为计算机应用、自动化、图像处理与模式识别、机电一体化专业的高年级本科生或研究生的参考书,也可供从事图像处理与识别的研究人员和工程技术人员阅读参考。(This book introduces the basic principles of image processing and recognition of the typical methods and practical skills . The book is divided into 12 chapters , Chapter 1- Chapter 6 is the basis of the content of image processing and recognition , including images scientific overview , MATLAB programming language images, image enhancement, image segmentation, image feature extraction and image recognition Chapter 7- Section Chapter 10 is a project example image processing and recognition , covering the medical image processing, character recognition and self- guided trolley path recognition example , the combination of theory and algorithms, for a lot of MATLAB code procedures to help readers learn how to use MATLAB language fast simulation , debugging and estimation methods algorithm. Chapter 11- Chapter 12 , are two examples of highly integrated , namely Visual C++ implementation based on neural network character recognition system and a license plate positioning system. The book)
    2014-03-26 11:09:37下载
    积分:1
  • Motion_detect_with_RGBshadow_remove
    利用背景减除法进行运动前景分割,而后利用归一化RGB颜色空间进行阴影减除,利用连通域进行滤澡,对每一帧进行运动前景提取。(Motion detection by background subtraction and RGB shadow removing method.)
    2012-11-20 10:47:33下载
    积分:1
  • 696518资源总数
  • 104444会员总数
  • 15今日下载