登录
首页 » Python » py-faster-rcnn-master

py-faster-rcnn-master

于 2020-12-11 发布 文件大小:654KB
0 245
下载积分: 1 下载次数: 14

代码说明:

  图像检测的算法,Faster R-CNN算法,先对整张图像进行卷积计算,然后通过感兴趣区域池化层(RoI Pooling Layer)将选择性搜索算法推荐出来的候选区域和卷积网络计算出的特征映射图进行融合,得到候选区域对应的特征矢量,这种共享卷积计算的操作极大地减少了卷积计算的次数。而且这些特征矢量的维度统一,方便后续的分类工作。通过感兴趣区域池化层处理卷积特征,并将得到的特征送往两个并行计算任务进行训练,分类和定位回归。通过这些方法和改进的框架,Fast R-CNN 用更短的训练和测试时长,取得了比 R-CNN 更好的效果(Faster R-CNN algorithm first convolutes the whole image, then fuses the candidate regions recommended by the selective search algorithm and the feature mapping maps calculated by the convolution network through the RoI Pooling Layer to get the corresponding feature vectors of the candidate regions, which greatly reduces the number of convolution calculations. Moreover, the dimension of these feature vectors is unified, which facilitates the subsequent classification work. The convolution feature is processed by the pooling layer of the region of interest, and the obtained feature is sent to two parallel computing tasks for training, classification and positioning regression. Through these methods and improved framework, Fast R-CNN uses shorter training and testing time and achieves better results than R-CNN.)

文件列表:

py-faster-rcnn-master\.gitignore, 84 , 2018-12-17
py-faster-rcnn-master\.gitmodules, 131 , 2018-12-17
py-faster-rcnn-master\data\.gitignore, 70 , 2018-12-17
py-faster-rcnn-master\data\demo\000456.jpg, 105302 , 2018-12-17
py-faster-rcnn-master\data\demo\000542.jpg, 115536 , 2018-12-17
py-faster-rcnn-master\data\demo\001150.jpg, 88635 , 2018-12-17
py-faster-rcnn-master\data\demo\001763.jpg, 73424 , 2018-12-17
py-faster-rcnn-master\data\demo\004545.jpg, 123072 , 2018-12-17
py-faster-rcnn-master\data\pylintrc, 56 , 2018-12-17
py-faster-rcnn-master\data\README.md, 2516 , 2018-12-17
py-faster-rcnn-master\data\scripts\fetch_faster_rcnn_models.sh, 842 , 2018-12-17
py-faster-rcnn-master\data\scripts\fetch_imagenet_models.sh, 825 , 2018-12-17
py-faster-rcnn-master\data\scripts\fetch_selective_search_data.sh, 858 , 2018-12-17
py-faster-rcnn-master\experiments\cfgs\faster_rcnn_alt_opt.yml, 78 , 2018-12-17
py-faster-rcnn-master\experiments\cfgs\faster_rcnn_end2end.yml, 227 , 2018-12-17
py-faster-rcnn-master\experiments\logs\.gitignore, 7 , 2018-12-17
py-faster-rcnn-master\experiments\README.md, 185 , 2018-12-17
py-faster-rcnn-master\experiments\scripts\faster_rcnn_alt_opt.sh, 1509 , 2018-12-17
py-faster-rcnn-master\experiments\scripts\faster_rcnn_end2end.sh, 1781 , 2018-12-17
py-faster-rcnn-master\experiments\scripts\fast_rcnn.sh, 1448 , 2018-12-17
py-faster-rcnn-master\lib\datasets\coco.py, 16560 , 2018-12-17
py-faster-rcnn-master\lib\datasets\ds_utils.py, 1336 , 2018-12-17
py-faster-rcnn-master\lib\datasets\factory.py, 1403 , 2018-12-17
py-faster-rcnn-master\lib\datasets\imdb.py, 9811 , 2018-12-17
py-faster-rcnn-master\lib\datasets\pascal_voc.py, 14217 , 2018-12-17
py-faster-rcnn-master\lib\datasets\tools\mcg_munge.py, 1451 , 2018-12-17
py-faster-rcnn-master\lib\datasets\VOCdevkit-matlab-wrapper\get_voc_opts.m, 231 , 2018-12-17
py-faster-rcnn-master\lib\datasets\VOCdevkit-matlab-wrapper\voc_eval.m, 1332 , 2018-12-17
py-faster-rcnn-master\lib\datasets\VOCdevkit-matlab-wrapper\xVOCap.m, 258 , 2018-12-17
py-faster-rcnn-master\lib\datasets\voc_eval.py, 6938 , 2018-12-17
py-faster-rcnn-master\lib\datasets\__init__.py, 248 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\bbox_transform.py, 2540 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\config.py, 9213 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\nms_wrapper.py, 642 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\test.py, 11120 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\train.py, 6076 , 2018-12-17
py-faster-rcnn-master\lib\fast_rcnn\__init__.py, 248 , 2018-12-17
py-faster-rcnn-master\lib\Makefile, 56 , 2018-12-17
py-faster-rcnn-master\lib\nms\.gitignore, 15 , 2018-12-17
py-faster-rcnn-master\lib\nms\cpu_nms.pyx, 2241 , 2018-12-17
py-faster-rcnn-master\lib\nms\gpu_nms.hpp, 146 , 2018-12-17
py-faster-rcnn-master\lib\nms\gpu_nms.pyx, 1110 , 2018-12-17
py-faster-rcnn-master\lib\nms\nms_kernel.cu, 5064 , 2018-12-17
py-faster-rcnn-master\lib\nms\py_cpu_nms.py, 1051 , 2018-12-17
py-faster-rcnn-master\lib\nms\__init__.py, 0 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\coco.py, 14881 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\cocoeval.py, 19735 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\license.txt, 1533 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\mask.py, 4058 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\maskApi.c, 7704 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\maskApi.h, 1928 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\UPSTREAM_REV, 80 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\_mask.pyx, 10709 , 2018-12-17
py-faster-rcnn-master\lib\pycocotools\__init__.py, 21 , 2018-12-17
py-faster-rcnn-master\lib\roi_data_layer\layer.py, 7450 , 2018-12-17
py-faster-rcnn-master\lib\roi_data_layer\minibatch.py, 8169 , 2018-12-17
py-faster-rcnn-master\lib\roi_data_layer\roidb.py, 5611 , 2018-12-17
py-faster-rcnn-master\lib\roi_data_layer\__init__.py, 248 , 2018-12-17
py-faster-rcnn-master\lib\rpn\anchor_target_layer.py, 11344 , 2018-12-17
py-faster-rcnn-master\lib\rpn\generate.py, 3894 , 2018-12-17
py-faster-rcnn-master\lib\rpn\generate_anchors.py, 3110 , 2018-12-17
py-faster-rcnn-master\lib\rpn\proposal_layer.py, 6803 , 2018-12-17
py-faster-rcnn-master\lib\rpn\proposal_target_layer.py, 7495 , 2018-12-17
py-faster-rcnn-master\lib\rpn\README.md, 780 , 2018-12-17
py-faster-rcnn-master\lib\rpn\__init__.py, 262 , 2018-12-17
py-faster-rcnn-master\lib\setup.py, 5665 , 2018-12-17
py-faster-rcnn-master\lib\transform\torch_image_transform_layer.py, 2000 , 2018-12-17
py-faster-rcnn-master\lib\transform\__init__.py, 0 , 2018-12-17
py-faster-rcnn-master\lib\utils\.gitignore, 9 , 2018-12-17
py-faster-rcnn-master\lib\utils\bbox.pyx, 1756 , 2018-12-17
py-faster-rcnn-master\lib\utils\blob.py, 1625 , 2018-12-17
py-faster-rcnn-master\lib\utils\timer.py, 948 , 2018-12-17
py-faster-rcnn-master\lib\utils\__init__.py, 248 , 2018-12-17
py-faster-rcnn-master\LICENSE, 3745 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\faster_rcnn_end2end\solver.prototxt, 387 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\faster_rcnn_end2end\test.prototxt, 8754 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\faster_rcnn_end2end\train.prototxt, 9840 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\fast_rcnn\solver.prototxt, 395 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\fast_rcnn\test.prototxt, 6774 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG16\fast_rcnn\train.prototxt, 6625 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\faster_rcnn_end2end\solver.prototxt, 392 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\faster_rcnn_end2end\test.prototxt, 6973 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\faster_rcnn_end2end\train(1).prototxt, 7282 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\fast_rcnn\solver.prototxt, 398 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\fast_rcnn\test.prototxt, 4037 , 2018-12-17
py-faster-rcnn-master\models\coco\VGG_CNN_M_1024\fast_rcnn\train.prototxt, 4051 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\faster_rcnn_test.pt, 6263 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\rpn_test.pt, 5305 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage1_fast_rcnn_solver30k40k.pt, 390 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage1_fast_rcnn_train.pt, 8241 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage1_rpn_solver60k80k.pt, 378 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage1_rpn_train.pt, 8062 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage2_fast_rcnn_solver30k40k.pt, 390 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage2_fast_rcnn_train.pt, 8337 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage2_rpn_solver60k80k.pt, 378 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_alt_opt\stage2_rpn_train.pt, 8126 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_end2end\solver.prototxt, 407 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_end2end\test.prototxt, 8945 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\faster_rcnn_end2end\train.prototxt, 10209 , 2018-12-17
py-faster-rcnn-master\models\pascal_voc\VGG16\fast_rcnn\solver.prototxt, 400 , 2018-12-17

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 1200734
    斐波那契数的实现算法及分析,标准化实验报告样本()
    2017-12-06 08:49:56下载
    积分:1
  • SegTool-lazy
    实现了交互式图像分割算法,只需手动标注标记点就可以实现图像分割(Interactive image segmentation algorithm, simply manually annotate the markers can be achieved to image segmentation)
    2012-04-22 21:59:11下载
    积分:1
  • Mirror_DImageProcess
    这个实例就像一个魔镜一样,能把原始图像照出各种变换效果,是基于MFC的多文档应用程序(This example is like a mirror,which can convert original image according to a variety of effects)
    2013-11-29 16:23:24下载
    积分:1
  • huiduju
    说明:  基于灰度矩的亚像素边缘检测,零件边缘提取(Subpixel edge contour extraction)
    2019-03-14 15:01:31下载
    积分:1
  • LIME-master
    说明:  使用了色调映射算法,调整图片的灰度,更好表达原图里的信息与特征。(The hue mapping algorithm is used to adjust the gray level of the image and better express the information and features in the original image.)
    2020-06-21 16:20:01下载
    积分:1
  • cvpr12_mfc
    cvpr2012_oral On Multiple Foreground Cosegmentation(In this paper, we address a challenging image segmentation problem called multiple foreground cosegmentation (MFC), which concerns a realistic scenario in general Webuser photo sets where a finite number of K foregrounds of interest repeatedly occur over the entire photo set, but only an unknown subset of them is presented in each image. This contrasts the classical cosegmentation problem dealt with by most existing algorithms, which assume a much simpler but less realistic setting where the same set of foregrounds recurs in every image. We propose a novel optimization method for MFC, which makes no assumption on foreground configurations and does not suffer from the aforementioned limitation, while still leverages all the benefits of having co-occurring or (partially) recurring contents across images. Our method builds on an iterative scheme that alternates between a foreground modeling module and a region assignment module, both highly efficient and scalable. In part)
    2012-12-06 19:38:33下载
    积分:1
  • ROI~
    图形图像感兴趣区域提取的方法,个人总结的~可以直接运行!(Graphic method of region of interest extraction, can be directly run personal summary!)
    2021-04-26 14:08:45下载
    积分:1
  • WenLiLiJiaophoto
    该程序为离焦模糊参数识别的方法,通过canny算子检测边缘,用hough变换检测直线的方法求离焦半径。(The program for the defocus blur parameter identification method by canny operator edge detection using hough transform line detection method for the defocus radius.)
    2021-01-12 16:48:49下载
    积分:1
  • BEMD-master
    说明:  BMED二维经验模态分解,用于处理二维信号(Two dimensional empirical mode decomposition)
    2020-11-17 09:49:39下载
    积分:1
  • CBIR
    一个基于Gabor滤波器组的多特征融合的图像检索算法(CBIR based on Multi-Features Combining Multi-parameters from Gabor Filter-bank, 简称multi法),融合了基于Gabor 小波系数的标准方差,峰态,能量,平滑度和一致性度量五个特征量度,实验表明,该算法是一种更加有效的图像检索方法。(we propose a CBIR algorithm based on Multi-Features Combining Multi-parameters from Gabor Filter-bank(called multi algorithm for short), which use Gabor filter banks and combine five features including standard deviation, kurtosis, energy, smoothness and uniformity together. The results of experiments show that this algorithm is a more effective method used for image retrieval.)
    2021-04-20 23:08:49下载
    积分:1
  • 696518资源总数
  • 106235会员总数
  • 12今日下载