-
temp_matlab
语音的识别的前端技术,语音的基音周期检测(Front-end voice recognition technology, Voice Pitch Detection)
- 2020-11-17 21:39:45下载
- 积分:1
-
speaker_recognition
说话人识别系统,界面友好,可以对实时录音的说话人进行识别(Speaker recognition system, user-friendly, real-time recording can be carried out to identify the speaker)
- 2021-04-20 14:38:50下载
- 积分:1
-
语音聚类示例
实验示例是基于语音中的mfcc,语音倒谱特征来进行聚类,先利用训练样本来计算训练样本聚类中心(用到了lbg算法),之后再进行分类。
注意:使用代码时需要自己更改文件路径。(This example is based on the MFCC in speech and the feature of speech Cepstrum to cluster. First, the training sample is used to calculate the training sample clustering center (using the LBG algorithm), then the classification is then carried out.)
- 2018-04-02 09:19:02下载
- 积分:1
-
最终代码说话人识别
实现了基于特定话语的聚类LGB和VQ的说话人识别(Speaker Recognition Based on Clustering LGB and VQ)
- 2019-05-20 15:04:44下载
- 积分:1
-
dtw_revised
利用DTW模版匹配算法实现0~9十个数字的识别。(use DTW template matching algorithm 0-9 10-digit identification.)
- 2007-06-11 16:51:28下载
- 积分:1
-
voicebox
语音识别需要用到的函数,在你的程序中可直接调用工具箱中的函数(Needed by the voice recognition function in your program can directly call the functions in the toolbox)
- 2012-12-18 10:12:23下载
- 积分:1
-
基于矢量量化(VQ)的说话人识别算法
基于矢量量化(VQ)的说话人识别算法源码(A Speaker Recognition Method Based on Modified VQ Algorithm)
- 2018-08-11 14:53:16下载
- 积分:1
-
MMSE_IC
基于LMS(最小均方误差算法)的自适应滤波 基于LMS(最小均方误差算法)的自适应滤波(based on the LMS (MMSE) algorithm based on the LMS adaptive filtering (minimum mean square error algorithm) the adaptive filtering based on the LMS (minimum mean square error algorithm) Adaptive Filter)
- 2020-06-29 23:00:01下载
- 积分:1
-
specsub_modified11
语音唤醒就是在设备待机状态下,用户说出特定的语音指令(唤醒词)使设备进入工作状态或完成某一操作。设备为了实现语音唤醒功能,就需要设备实时监听,也就是实时的录音并分析有没有唤醒词来唤醒设备。评价一个语音唤醒系统的标准有三个:唤醒正确率、误报率、功耗。一般情况下,唤醒正确率越高 ,误报率也越高。好的系统就需要唤醒率高,误报率低,功耗低。(Speech wakeup is when the device is in standby mode, the user speaks a particular voice command (wake up word), so that the device enters the work state or completes an operation. In order to realize the function of speech wakeup, the device needs real-time monitoring, that is, real-time recording and analyzing whether or not wake words are used to wake up the equipment. There are three criteria for evaluating a voice wakeup system: wakeup accuracy, false positive rate, and power consumption. Generally, the higher the correct rate of arousal, the higher the false positive rate. A good system requires high wake-up rate, low false positive rate and low power consumption.)
- 2017-08-15 16:45:55下载
- 积分:1
-
matlab
kalman语音处理的源代码,用处语音增强的处理。(the kalman voice processing source code)
- 2013-04-02 16:51:36下载
- 积分:1