登录
首页 » matlab » kanotf

kanotf

于 2013-12-02 发布 文件大小:461KB
0 86
下载积分: 1 下载次数: 3

代码说明:

  helo hw ru fne kay means

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • ofdm_all_channel_2
    OFDM链路级别仿真,包括数字调制与解调,AWGN信道,CP的添加与消除,零填充,(OFDM link-level simulation, including digital modulation and demodulation, AWGN channel, CP addition and elimination, zero-filling,)
    2008-06-05 15:43:39下载
    积分:1
  • TetrahedronElementStiffness
    对构件进行优化分析时,需要将其剖分成四面体网格单元,本源码可以用来求每一个小四面体的刚度矩阵(Optimization analysis of the components need to be partitioned into tetrahedral grid cell, the source can be used to seek the stiffness matrix of each small tetrahedron)
    2010-06-02 12:01:25下载
    积分:1
  • me_root_Music
    阵列天线中子空间算法中MUSIC算法的一种改进方法即求根MUSIC算法。(Neutron array antenna space MUSIC algorithm, an improved algorithm method that Root MUSIC algorithm.)
    2013-12-13 10:17:59下载
    积分:1
  • imagemerge
    本段代码主要是为了实现讲多光谱图像进行光谱分离然后再合并成一种可以在matlab中显示的格式.tif的图像,同时保证了原始的图像信息不丢失(This code is mainly to achieve multispectral images speak for spectral separation and then combined into a format that can be displayed in matlab. Tif image, while maintaining the original image information is not lost)
    2014-02-21 20:26:19下载
    积分:1
  • traffic1
    MATLAB交通元胞自动机示例,适合初学者学习(MATLAB CA traffic model)
    2012-05-16 16:27:11下载
    积分:1
  • configfs_example_explicit
    This file is a demonstration module containing a number of configfs subsystems.
    2014-10-14 10:03:32下载
    积分:1
  • INDICES_SOBRESUB
    funcion para determinar indices de desempe帽o
    2013-12-11 09:45:21下载
    积分:1
  • UCA_LCMV
    八阵元均匀圆阵波束赋型LCMV算法,形成三维方向图(Eight-membered uniform circular array beamforming algorithm LCMV, a three-dimensional direction in FIG.)
    2017-03-29 21:51:09下载
    积分:1
  • CDMA-technical-training-material
    CDMA技术培训资料,希望对学习CDMA的同学有帮助!(CDMA technical training material)
    2010-10-12 10:08:21下载
    积分:1
  • MDL_segmenter
    em algorithm - Find approximate solution to Sf = conv(s,f) = d using EM iteration. EM seeks to minimize the Poisson negative log likelihood function J(f) = sum_i {[Sf]_i - (d_i + sigma^2)*log([Sf]_i + sigma^2)}.
    2010-10-28 13:35:59下载
    积分:1
  • 696518资源总数
  • 104269会员总数
  • 42今日下载