登录
首页 » matlab » DeepLearnToolbox-master

DeepLearnToolbox-master

于 2020-06-19 发布 文件大小:28871KB
0 81
下载积分: 1 下载次数: 2

代码说明:

  CNN,DBN算法可以对手写体数字进行识别,准确率高(CNN and DBN algorithm can recognize handwritten numerals with high accuracy)

文件列表:

DeepLearnToolbox-master, 0 , 2014-01-12
DeepLearnToolbox-master\.travis.yml, 249 , 2014-01-12
DeepLearnToolbox-master\CAE, 0 , 2014-01-12
DeepLearnToolbox-master\CAE\caeapplygrads.m, 1219 , 2014-01-12
DeepLearnToolbox-master\CAE\caebbp.m, 917 , 2014-01-12
DeepLearnToolbox-master\CAE\caebp.m, 1011 , 2014-01-12
DeepLearnToolbox-master\CAE\caedown.m, 259 , 2014-01-12
DeepLearnToolbox-master\CAE\caeexamples.m, 754 , 2014-01-12
DeepLearnToolbox-master\CAE\caenumgradcheck.m, 3618 , 2014-01-12
DeepLearnToolbox-master\CAE\caesdlm.m, 845 , 2014-01-12
DeepLearnToolbox-master\CAE\caetrain.m, 1148 , 2014-01-12
DeepLearnToolbox-master\CAE\caeup.m, 489 , 2014-01-12
DeepLearnToolbox-master\CAE\max3d.m, 173 , 2014-01-12
DeepLearnToolbox-master\CAE\scaesetup.m, 1937 , 2014-01-12
DeepLearnToolbox-master\CAE\scaetrain.m, 270 , 2014-01-12
DeepLearnToolbox-master\CNN, 0 , 2014-01-12
DeepLearnToolbox-master\CNN\cnnapplygrads.m, 575 , 2014-01-12
DeepLearnToolbox-master\CNN\cnnbp.m, 2141 , 2014-01-12
DeepLearnToolbox-master\CNN\cnnff.m, 1774 , 2014-01-12
DeepLearnToolbox-master\CNN\cnnnumgradcheck.m, 3430 , 2014-01-12
DeepLearnToolbox-master\CNN\cnnsetup.m, 2020 , 2014-01-12
DeepLearnToolbox-master\CNN\cnntest.m, 193 , 2014-01-12
DeepLearnToolbox-master\CNN\cnntrain.m, 845 , 2014-01-12
DeepLearnToolbox-master\CONTRIBUTING.md, 544 , 2014-01-12
DeepLearnToolbox-master\create_readme.sh, 744 , 2014-01-12
DeepLearnToolbox-master\data, 0 , 2014-01-12
DeepLearnToolbox-master\data\mnist_uint8.mat, 14735220 , 2014-01-12
DeepLearnToolbox-master\DBN, 0 , 2019-08-01
DeepLearnToolbox-master\DBN\allcomb.m, 2618 , 2014-01-12
DeepLearnToolbox-master\DBN\dbnsetup.m, 557 , 2014-01-12
DeepLearnToolbox-master\DBN\dbntrain.m, 232 , 2014-01-12
DeepLearnToolbox-master\DBN\dbnunfoldtonn.m, 425 , 2014-01-12
DeepLearnToolbox-master\DBN\expand.m, 1958 , 2014-01-12
DeepLearnToolbox-master\DBN\flicker.m, 208 , 2014-01-12
DeepLearnToolbox-master\DBN\flipall.m, 80 , 2014-01-12
DeepLearnToolbox-master\DBN\fliplrf.m, 543 , 2014-01-12
DeepLearnToolbox-master\DBN\flipudf.m, 576 , 2014-01-12
DeepLearnToolbox-master\DBN\guzhangNumber.xls, 406528 , 2019-06-03
DeepLearnToolbox-master\DBN\im2patches.m, 313 , 2014-01-12
DeepLearnToolbox-master\DBN\isOctave.m, 108 , 2014-01-12
DeepLearnToolbox-master\DBN\makeLMfilters.m, 1895 , 2014-01-12
DeepLearnToolbox-master\DBN\mnist_uint8.mat, 14735220 , 2014-01-12
DeepLearnToolbox-master\DBN\myOctaveVersion.m, 169 , 2014-01-12
DeepLearnToolbox-master\DBN\nnapplygrads.m, 628 , 2014-01-12
DeepLearnToolbox-master\DBN\nnbp.m, 1638 , 2014-01-12
DeepLearnToolbox-master\DBN\nnchecknumgrad.m, 704 , 2014-01-12
DeepLearnToolbox-master\DBN\nneval.m, 772 , 2014-01-12
DeepLearnToolbox-master\DBN\nnff.m, 1849 , 2014-01-12
DeepLearnToolbox-master\DBN\nnpredict.m, 188 , 2014-01-12
DeepLearnToolbox-master\DBN\nnsetup.m, 1844 , 2014-01-12
DeepLearnToolbox-master\DBN\nntest.m, 180 , 2014-01-12
DeepLearnToolbox-master\DBN\nntrain.m, 2414 , 2014-01-12
DeepLearnToolbox-master\DBN\nnupdatefigures.m, 1858 , 2014-01-12
DeepLearnToolbox-master\DBN\normalize.m, 97 , 2014-01-12
DeepLearnToolbox-master\DBN\patches2im.m, 242 , 2014-01-12
DeepLearnToolbox-master\DBN\randcorr.m, 283 , 2014-01-12
DeepLearnToolbox-master\DBN\randp.m, 2083 , 2014-01-12
DeepLearnToolbox-master\DBN\rbmdown.m, 90 , 2014-01-12
DeepLearnToolbox-master\DBN\rbmtrain.m, 1401 , 2014-01-12
DeepLearnToolbox-master\DBN\rbmup.m, 89 , 2014-01-12
DeepLearnToolbox-master\DBN\rnd.m, 49 , 2014-01-12
DeepLearnToolbox-master\DBN\sigm.m, 48 , 2014-01-12
DeepLearnToolbox-master\DBN\sigmrnd.m, 126 , 2014-01-12
DeepLearnToolbox-master\DBN\softmax.m, 256 , 2014-01-12
DeepLearnToolbox-master\DBN\tanh_opt.m, 54 , 2014-01-12
DeepLearnToolbox-master\DBN\visualize.m, 1072 , 2014-01-12
DeepLearnToolbox-master\DBN\whiten.m, 183 , 2014-01-12
DeepLearnToolbox-master\DBN\zscore.m, 137 , 2014-01-12
DeepLearnToolbox-master\LICENSE, 1313 , 2014-01-12
DeepLearnToolbox-master\NN, 0 , 2014-01-12
DeepLearnToolbox-master\NN\nnapplygrads.m, 628 , 2014-01-12
DeepLearnToolbox-master\NN\nnbp.m, 1638 , 2014-01-12
DeepLearnToolbox-master\NN\nnchecknumgrad.m, 704 , 2014-01-12
DeepLearnToolbox-master\NN\nneval.m, 772 , 2014-01-12
DeepLearnToolbox-master\NN\nnff.m, 1849 , 2014-01-12
DeepLearnToolbox-master\NN\nnpredict.m, 188 , 2014-01-12
DeepLearnToolbox-master\NN\nnsetup.m, 1844 , 2014-01-12
DeepLearnToolbox-master\NN\nntest.m, 180 , 2014-01-12
DeepLearnToolbox-master\NN\nntrain.m, 2414 , 2014-01-12
DeepLearnToolbox-master\NN\nnupdatefigures.m, 1858 , 2014-01-12
DeepLearnToolbox-master\README.md, 8730 , 2014-01-12
DeepLearnToolbox-master\README_header.md, 2256 , 2014-01-12
DeepLearnToolbox-master\REFS.md, 950 , 2014-01-12
DeepLearnToolbox-master\SAE, 0 , 2014-01-12
DeepLearnToolbox-master\SAE\saesetup.m, 132 , 2014-01-12
DeepLearnToolbox-master\SAE\saetrain.m, 308 , 2014-01-12
DeepLearnToolbox-master\tests, 0 , 2014-01-12
DeepLearnToolbox-master\tests\runalltests.m, 165 , 2014-01-12
DeepLearnToolbox-master\tests\test_cnn_gradients_are_numerically_correct.m, 552 , 2014-01-12
DeepLearnToolbox-master\tests\test_example_CNN.m, 981 , 2014-01-12
DeepLearnToolbox-master\tests\test_example_DBN.m, 1644 , 2019-08-01
DeepLearnToolbox-master\tests\test_example_NN.m, 3247 , 2014-01-12
DeepLearnToolbox-master\tests\test_example_SAE.m, 934 , 2014-01-12
DeepLearnToolbox-master\tests\test_nn_gradients_are_numerically_correct.m, 749 , 2014-01-12
DeepLearnToolbox-master\util, 0 , 2014-01-12
DeepLearnToolbox-master\util\allcomb.m, 2618 , 2014-01-12
DeepLearnToolbox-master\util\expand.m, 1958 , 2014-01-12
DeepLearnToolbox-master\util\flicker.m, 208 , 2014-01-12
DeepLearnToolbox-master\util\flipall.m, 80 , 2014-01-12
DeepLearnToolbox-master\util\fliplrf.m, 543 , 2014-01-12

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • matlab-Image-Processing
    Matlab,Image Processing,including Mean Value Filtering,MidValue Filtering,Laplacian Transformation,Locating Center of Stripes.With GUI Interface
    2013-11-19 18:56:29下载
    积分:1
  • Genetic Algorithm
    Genetic Algorithm Document
    2019-05-03 14:18:30下载
    积分:1
  • fangzhen
    matlab 代码,实现了ITU-T V.32建议的 modem 整体仿真实现。(matlab code, implementation of the ITU-T V.32 proposed modem achieve the overall simulation.)
    2009-03-25 23:37:28下载
    积分:1
  • lmstde_a
    原上载过一个LMSTDE,适用于两个信号在时域上不重叠,而本程序的两个信号在时域上重叠的,并以正弦波作为例子加以说明,求出延迟时间。(The original upload a LMSTDE, apply to the two signals, which in the time domain do not overlap, and this process two signals are overlapped in time domain and a sine signal as an example, is calculated for delay time.)
    2009-04-20 14:11:53下载
    积分:1
  • 111186761EMnormmixtest
    用matlab实现高斯混合模型Em算法的源程序哪位有呀,帮帮忙啦- 工具箱与(With the realization of Gaussian mixture model matlab algorithm Em Which source are you? Help help you- the toolbox and)
    2009-05-16 09:09:05下载
    积分:1
  • kongjianpinghua
    传统的DOA估计算法,如MUSIC、ESPRIT算法,都是在假设信号没有相干的情况下求解的,一旦信源信号具有相干性,估计性能会急速下降,所以提出了空间平滑的算法,解决相干信号的波达估计!(The traditional DOA algorithms, such as MUSIC, ESPRIT algorithm, is under the assumption that the signal is not coherent case solving, once the source signal with coherence, estimation performance will fall, so put forward spatial smoothing algorithm, to solve the coherent signal estimation of direction of arrival!)
    2012-11-11 20:54:46下载
    积分:1
  • GSM-and-Personal-Communications-Handbook-Artech-H
    (Artech House Mobile Communications Library) Siegmund Redl, Matthias Weber, Malcolm W. Oliphant-GSM and Personal Communications Handbook-Artech House Publishers (1998)..a very good book for mobile engineers and students as well
    2013-12-07 14:34:44下载
    积分:1
  • antenna
    说明:  求解细线天线或细直导线的辐射或散射特性的矩量法分析论文(Solution of thin wire antennas or small straight wire radiation or scattering characteristics of the moment method analysis of papers)
    2008-09-02 15:44:46下载
    积分:1
  • matlabreadavi
    这是一个matlab读取视频的例子,这种东西我新接触,不知道大家要不要。我觉得不错。(read Matlab video examples, this thing I new contacts do not know if you want to. I think it's good.)
    2006-06-09 16:27:16下载
    积分:1
  • roundRobinScheduler
    LTE中最经常用到的调度算法,轮询算法,主要体现了公平性(LTE scheduling algorithm is the most frequently used, polling algorithm, mainly reflecting the fairness)
    2014-11-17 22:28:23下载
    积分:1
  • 696518资源总数
  • 104228会员总数
  • 45今日下载