-
zernike
采用zernike方法进行图像处理,适用于图像匹配,图像重建(The image processing method using zernike for image matching, image reconstruction)
- 2014-05-06 23:20:29下载
- 积分:1
-
jpeg2000
说明: 本部分源码是处理静态图像时候,需要的一部分代码,希望对于那些正在研究图像处理技术的朋友有用。(This section is the source when dealing with a static image, the need for part of the code, I hope for those who are studying image processing technology useful friends.)
- 2008-12-02 19:29:41下载
- 积分:1
-
OnlineForest-0.11.tar
online random forest 在线随机森林做跟踪和分类的代码(online random forest-line tracking and classification random forest to do the code)
- 2020-06-29 22:40:02下载
- 积分:1
-
total_mkl_matlab
MKL多核学习综述文章对应的很多MKL代码的合集,里面有很多有代表性的代码,非常详细!(MKL multicore learn many review articles MKL code corresponding collection, there are a lot of representative code, very detailed!)
- 2021-04-19 15:08:51下载
- 积分:1
-
v
说明: 关于GLSL的点光源,载入模型,纹理。。。。。。。。。。(light engine code OpenGL.)
- 2021-04-28 16:38:44下载
- 积分:1
-
高斯混合模型
说明: 高斯混合模型实现图像分割分类,包含中文注释。(Gaussian mixture model implements image segmentation and classification, including Chinese annotation.)
- 2021-03-03 21:39:32下载
- 积分:1
-
HOG+SVM进行图片中行人检测
行人检测HOG+SVM进行图片中行人检测,提供训练用的pos和neg样本,效果还可以;没有SVM工具箱的,压缩包里已经提供了,安装一下即可(Pedestrian detection HOG + SVM for pedestrian detection in pictures, providing POS and neg samples for training, the effect is good; without SVM toolbox, the compression package has been provided, just install it.)
- 2020-10-30 16:09:56下载
- 积分:1
-
GMM-HMRF
说明: 基于高斯混合模型和隐马尔科夫模型的图像分割算法(Image segmentation algorithm based on Gaussian mixture model and hidden Markov model)
- 2019-12-02 16:34:34下载
- 积分:1
-
vc-driven-camera-capture-images
该文档的主要功能就是利用vc编写一段代码实现摄像头采集图像。(The main function of the document is vc write a piece of code to achieve the camera capture images.)
- 2013-04-02 10:43:48下载
- 积分:1
-
CSR_Denoising
该算法首先通过字典学习得到含噪图像的冗余字典,然后对相似的图像块进行聚类构成块群,并通过迭代收缩和L1正则化约束,对同类的图像块在字典上进行稀疏表示,以达到降噪的目的。实验结果表明,在常规的图像处理上,本文提出的算法能较好的保留图像的结构信息,与K-SVD和BM3D等现有的流行算法相比,具有更高的峰值信噪比(PSNR)(It firstly get the redundant dictionary of a noised image by dictionary learning.Then,the image patches are gathered according to their similarities.Meanwhile,the similar patches get sparse representation showed in dictionaries by iterative shrinkage and L1 regularization constraints and eventually the image is restored and noise is removed.The experimental results indicate that the proposed algorithm can well preserve the structure information of the common image with a higher Peak Signal to Noise Ratio(PNSR),compared with state-of-the-art algorithms,such as K-SVD and BM3D)
- 2017-05-02 20:48:25下载
- 积分:1