-
Iterative_Method
说明: 包含CG、BICG和GMRES算法及jacobi和SOR迭代法等多种算法,可以很好的适用于阶数较大的线性系统的数值计算。(Including CG, bicg, GMRES algorithm and Jacobi and SOR iterative algorithm, they can be well applied to the numerical calculation of large order linear system.)
- 2020-08-17 22:28:24下载
- 积分:1
-
sinx_16_xiebo
matlab程序,可任意生产波形,包括正弦波,谐波或者叠加的n次谐波,也可产生mif文件
(matlab procedures, arbitrary waveform production, including sine wave, or a superposition of harmonic n harmonics can produce mif file)
- 2014-08-21 15:49:46下载
- 积分:1
-
Digital-Beamformer
Calculation of digita Beamformer
- 2013-04-13 21:55:24下载
- 积分:1
-
pointers-01.00.05
MATLAB的库提供了一个指针的指针和MATLAB的数据结构实现(MATLAB Pointer Library provides an implemetation of pointers and data structures in MATLAB )
- 2009-11-23 16:34:07下载
- 积分:1
-
torr3D
说明: 这是一个MATLAB torr3D三维重建工具箱,供图像处理的朋友学习。(This is a MATLAB torr3D reconstruction toolbox for image processing of the friends to learn.)
- 2011-04-15 12:42:32下载
- 积分:1
-
point_corrcoef_mean
计算两个区域的相关系数的平均值 速度比直接用regress函数 快很多很多(calculate the mean correlation coefficient of two areas)
- 2012-06-05 11:18:55下载
- 积分:1
-
Runge-Kutta-4
用Runge-Kutta 4阶算法对初值问题按不同步长进行求解,用于观察稳定区间的作用。(With a four order Runge- Kutta algorithm for initial value problems in asynchronous long, used to observe stability range.)
- 2013-05-07 20:36:32下载
- 积分:1
-
matrices_aleatoires_SemP_LNM_1801
Matrices aleatoires :
Statistique asymptotique des valeurs propres
- 2012-01-13 19:00:50下载
- 积分:1
-
MVDR
说明: 关于矢量水听器MVDR的波束形成性能研究(On the vector hydrophone performance of MVDR beamforming)
- 2011-03-26 22:50:56下载
- 积分:1
-
OMB_DHC
该matlab代码实现了“综合多分支分裂式层次化聚类”
(Matlab implementation of Omnibus Multi-Branching Divisive Hierarchical Clustering (OMBDHC)
“A competitive omnibus performance criterion for divisive multi-branching
hierarchical clustering” by Soeria-Atmadja et al. (submitted). Note that OMB-DHC package
is implemented in Matlab code and therefore demands the Matlab core program, as well as the
Statistics toolbox of Matlab.
Divisive hierarchical clustering (DHC) has emerged as a promising alternative for the
identification of sub-structures in multivariate data. Of particular interest is multi-branching
DHC, which allows flexible numbers of subclusters at each hierarchical level. One poorly
explored issue in multi-branching DHC concerns the actual importance of the two
performance criteria (and their associated algorithms) to automatically create clusters and
select number of clusters, respectively. Another interesting but hitherto unexplored issue is
the possibility to employ a single omnibus performance criterion that guide)
- 2013-01-29 11:05:02下载
- 积分:1