-
matlab_ga_optimal-compution
基于Matlab遗传算法工具箱的优化计算实现.pdf 还不错哦(Matlab GA optimal compution)
- 2009-06-07 21:06:59下载
- 积分:1
-
libsvm-3.20
利用svm进行分类器 很方便实用 强大 简介(Use svm classifier 13# highest feature index 3# kernel parameter-d
1# kernel parameter-g
1# kernel parameter-s
1# kernel parameter-r
270# number of training documents
117# number of support vectors plus 1 )
- 2014-11-19 10:29:59下载
- 积分:1
-
reconnaissance-faciale
gui (graphical user interface) for face recognition base on pca (eigenface)
- 2013-05-04 16:05:11下载
- 积分:1
-
exa130302_ab
滤波器的设计IIR型 MATLAB语言实现(IIR Filter Design- MATLAB)
- 2007-05-20 20:19:57下载
- 积分:1
-
main
实现心电信号傅里叶变换处理、并显示原信号和处理后的信号(realized the FFT of ECG, and display the results)
- 2014-11-18 23:04:51下载
- 积分:1
-
GMx
灰色线性组合模型算法,可以实现该算法的建模,拟合以及预测(Grey linear combination model algorithm, the algorithm can be implemented for modeling, fitting and forecasting)
- 2013-11-01 17:36:20下载
- 积分:1
-
MATLABCoding
Implementing quadrature modulation and demodulation of analog signals in digital signal processing, using MATLAB
- 2009-05-11 22:57:14下载
- 积分:1
-
TortoiseSVNMatlab
matlab 源代码管理
用法见说明
matlab source code management(matlab source code management)
- 2013-03-19 10:47:02下载
- 积分:1
-
MAT
mathematique applications
- 2011-05-24 05:31:41下载
- 积分:1
-
fractal-use
分形的练习一
①Koch曲线
用复数的方法来迭代Koch曲线
clear i 防止i被重新赋值
A=[0 1] 初始A是连接(0,0)与(1,0)的线段
t=exp(i*pi/3)
n=2 n是迭代次数
for j=0:n
A=A/3 a=ones(1,2*4^j)
A=[A (t*A+a/3) (A/t+(1/2+sqrt(3)/6*i)*a) A+2/3*a]
end
plot(real(A),imag(A))
axis([0 1 -0.1 0.8])
②Sierpinski三角形
A=[0 1 0.5 0 0 1] 初始化A
n=3 迭代次数
for i=1:n
A=A/2 b=zeros(1,3^i) c=ones(1,3^i)/2
A=[A A+[c b] A+[c/2 c]]
end
for i=1:3^n
patch(A(1,3*i-2:3*i),A(2,3*i-2:3*i), b ) patch填充函数
end
(Fractal
Exercise One
The ① Koch curve
Plural iteration Koch curve
clear i to prevent i is reassigned
A = [0 1] initial A is a connection (0,0) and (1,0) of the segments
t = exp (i* pi/3)
n = 2 n is the number of iterations
for j = 0: n
A = A/3 a = ones (1,2* 4 ^ j)
A = [A (t* A+ a/3) (A/t+ (1/2+ sqrt (3)/6* i)* a) A+2/3* a]
end
plot (real (A), imag (A))
axis ([0 1-0.1 0.8])
② Sierpinski triangle
A = [0 1 0.5 0 0 1] initialized A
n = 3 the number of iterations.
for i = 1: n
A = A/2 b = zeros (1,3 ^ i) c = ones (1,3 ^ i)/2
A = [A A+ [c b] A+ [c/2 c]]
end
for i = 1:3 ^ n
patch (A (1,3* i-2: 3* i), A (2,3* i-2: 3* i), b ) patch filled function
end)
- 2013-03-02 10:03:09下载
- 积分:1