fractal-use
代码说明:
分形的练习一 ①Koch曲线 用复数的方法来迭代Koch曲线 clear i 防止i被重新赋值 A=[0 1] 初始A是连接(0,0)与(1,0)的线段 t=exp(i*pi/3) n=2 n是迭代次数 for j=0:n A=A/3 a=ones(1,2*4^j) A=[A (t*A+a/3) (A/t+(1/2+sqrt(3)/6*i)*a) A+2/3*a] end plot(real(A),imag(A)) axis([0 1 -0.1 0.8]) ②Sierpinski三角形 A=[0 1 0.5 0 0 1] 初始化A n=3 迭代次数 for i=1:n A=A/2 b=zeros(1,3^i) c=ones(1,3^i)/2 A=[A A+[c b] A+[c/2 c]] end for i=1:3^n patch(A(1,3*i-2:3*i),A(2,3*i-2:3*i), b ) patch填充函数 end (Fractal Exercise One The ① Koch curve Plural iteration Koch curve clear i to prevent i is reassigned A = [0 1] initial A is a connection (0,0) and (1,0) of the segments t = exp (i* pi/3) n = 2 n is the number of iterations for j = 0: n A = A/3 a = ones (1,2* 4 ^ j) A = [A (t* A+ a/3) (A/t+ (1/2+ sqrt (3)/6* i)* a) A+2/3* a] end plot (real (A), imag (A)) axis ([0 1-0.1 0.8]) ② Sierpinski triangle A = [0 1 0.5 0 0 1] initialized A n = 3 the number of iterations. for i = 1: n A = A/2 b = zeros (1,3 ^ i) c = ones (1,3 ^ i)/2 A = [A A+ [c b] A+ [c/2 c]] end for i = 1:3 ^ n patch (A (1,3* i-2: 3* i), A (2,3* i-2: 3* i), b ) patch filled function end)
下载说明:请别用迅雷下载,失败请重下,重下不扣分!