登录

最新会员 最新下载

成为了本站VIP会员

01月05日 00:38

成为了本站VIP会员

2024-12-25 15:38

成为了本站VIP会员

2024-12-25 12:28

成为了本站VIP会员

2024-12-25 12:10

成为了本站VIP会员

2024-12-24 23:54

成为了本站VIP会员

2024-12-24 23:29
已选条件
  1. 编程语言:matlab
  2. 代码类别:通讯编程
  3. 发布时间:不限
全部撤销
编程语言 更多 收起
代码类别 更多 收起
发布时间
更多选项

1. 基于MATLAB的IIR数字滤波器的设计与仿真分析_刘兴

说明:  数字信号处理,利用matlab语言仿真,对信号进行滤波。(Digital signal processing, using MATLAB language simulation to filter the signal)

0
下载
174
浏览
2019-04-12发布

2. channel estimation

  有助于学习LS信道估计的编码,以及mmse和LMMSE(ls chanel MMSE CHANEL LMMSE CHANEL)

5
下载
138
浏览
2019-04-12发布

3. channel estimation

说明:  有助于学习LS信道估计的编码,以及mmse和LMMSE(ls chanel MMSE CHANEL LMMSE CHANEL)

9
下载
101
浏览
2019-04-12发布

4. polarcoding_matlab

  实现Polar码编码译码,SC译码,简单实用,运行速度快(Polar MATLAB include encode and decode useful and simple)

5
下载
148
浏览
2019-04-10发布

5. polarcoding_matlab

说明:  实现Polar码编码译码,SC译码,简单实用,运行速度快(Polar MATLAB include encode and decode useful and simple)

14
下载
145
浏览
2019-04-10发布

6. 多径干扰下ofdm仿真

  多径参数干扰下的ofdm系统的matlab仿真代码,可供学习(Matlab simulation code of OFDM system under multipath parameter interference can be learned)

2
下载
148
浏览
2019-04-10发布

7. 多径干扰下ofdm仿真

说明:  多径参数干扰下的ofdm系统的matlab仿真代码,可供学习(Matlab simulation code of OFDM system under multipath parameter interference can be learned)

7
下载
164
浏览
2019-04-10发布

8. SLM算法

  SLM算法降低OFDM通信系统中的PAPR,使用matlab进行仿真(SLM algorithm reduces PAPR in OFDM communication system, and matlab is used for simulation)

5
下载
141
浏览
2019-04-09发布

9. SLM算法

说明:  SLM算法降低OFDM通信系统中的PAPR,使用matlab进行仿真(SLM algorithm reduces PAPR in OFDM communication system, and matlab is used for simulation)

11
下载
183
浏览
2019-04-09发布

10. test_sam

  实现了polar在BEC信道下的编译码,画出了误码率图像(The encoding and decoding of polar in BEC channel is realized, and the bit error rate image is drawn.)

4
下载
118
浏览
2019-04-09发布

11. test_sam

说明:  实现了polar在BEC信道下的编译码,画出了误码率图像(The encoding and decoding of polar in BEC channel is realized, and the bit error rate image is drawn.)

11
下载
118
浏览
2019-04-09发布

12. CVX_9.744

说明:  使用凸优化方法来优化17 元随机稀疏线阵 (阵列孔径为 9.744λ )(Using convex optimization method to optimize 17-element random sparse linear array (array aperture is 9.744 lambda))

27
下载
151
浏览
2019-04-06发布

13. GAzhouqi

  使用改进的遗传算法来优化一维周期稀疏线阵(Using improved genetic algorithm to optimize one-dimensional periodic sparse linear array)

2
下载
136
浏览
2019-04-06发布

14. GAzhouqi

说明:  使用改进的遗传算法来优化一维周期稀疏线阵(Using improved genetic algorithm to optimize one-dimensional periodic sparse linear array)

3
下载
119
浏览
2019-04-06发布

15. tcm_8psk

说明:  TCM-8psk的matlab编码,打开直接运行即可使用 TCM-8psk matlab code, open and run directly(TCM-8psk matlab code, open and run directly)

3
下载
144
浏览
2019-04-03发布

16. afSTFT-master

说明:  该软件的处理类似于短时傅立叶变换(STFT),但应用了更长、更重叠的分析/合成窗口,使时频处理从根本上对混叠具有鲁棒性。这种差异与非常活跃的时频处理技术有关,例如Dirac或优化的自适应波束形成器。(The software does processing similar to the short-time Fourier transform , but applies the longer and more overlapping analysis/synthesis window to make the time-frequency processing fundamentally robust for aliasing.)

1
下载
135
浏览
2019-04-03发布

17. 第一次作业_基于分类算法的雷达状态识别

  第一次作业_基于分类算法的雷达状态识别 对于本数据集中的雷达状态识别,数据降维前使用朴素贝叶斯、支持向量机、神经网络的分类算法对于识别的准确率无太大影响;数据降维后使用神经网络算法最优,支持向量机算法其次,朴素贝叶斯算法较差。此外,训练样本越多,分类准确率有小幅度提高。(First Operation Radar State Recognition Based on Classification Algorithms For radar state recognition in this data set, the classification algorithm of Naive Bayesian, Support Vector Machine and Neural Network before data dimension reduction has little effect on the accuracy of recognition; Neural Network algorithm is the best after data dimension reduction, Support Vector Machine algorithm is the second, Naive Bayesian algorithm is the worst. In addition, the more training samples, the smaller the classification accuracy.)

5
下载
117
浏览
2019-04-03发布

18. 第一次作业_基于分类算法的雷达状态识别

说明:  第一次作业_基于分类算法的雷达状态识别 对于本数据集中的雷达状态识别,数据降维前使用朴素贝叶斯、支持向量机、神经网络的分类算法对于识别的准确率无太大影响;数据降维后使用神经网络算法最优,支持向量机算法其次,朴素贝叶斯算法较差。此外,训练样本越多,分类准确率有小幅度提高。(First Operation Radar State Recognition Based on Classification Algorithms For radar state recognition in this data set, the classification algorithm of Naive Bayesian, Support Vector Machine and Neural Network before data dimension reduction has little effect on the accuracy of recognition; Neural Network algorithm is the best after data dimension reduction, Support Vector Machine algorithm is the second, Naive Bayesian algorithm is the worst. In addition, the more training samples, the smaller the classification accuracy.)

6
下载
162
浏览
2019-04-03发布

19. IET_QLRSA

  用Q-Learning实现中继选择,选择最佳中继进行通信传输(Realization of Relay Selection with Q-Learning)

9
下载
170
浏览
2019-04-02发布

20. IET_QLRSA

说明:  用Q-Learning实现中继选择,选择最佳中继进行通信传输(Realization of Relay Selection with Q-Learning)

27
下载
178
浏览
2019-04-02发布