▍1. MMAS
说明: 在信息素更新上面对于蚁群算法所做出的改进,(In pheromone update, the improvement of ant colony algorithm is made,)
说明: 蚁群算法求解TSP问题程序,代码简单明了,易于理解。(Ant colony algorithm for TSP)
利用遗传算法求解柔性车间调度问题,采用Python编程实现(Using Genetic Algorithm to Solve Flexible Workshop Scheduling Problem)
说明: 利用遗传算法求解柔性车间调度问题,采用Python编程实现(Using Genetic Algorithm to Solve Flexible Workshop Scheduling Problem)
求解多目标问题,业内最经典的多目标算法之一(to solve multi-object problem)
说明: 求解多目标问题,业内最经典的多目标算法之一(to solve multi-object problem)
说明: 粒子群算法的寻优机制,另附十余个测试函数。主程序为test_basic(Particle Optimization Algorithm)
根据Degree Centrality、Co-Expression Weighted by clustering Coefficient、Betweenness Centrality、PeC等六种参数的计算来寻找关键蛋白质(Find the key proteins according to the calculation of Degree Centrality, Co-Expression Weighted by clustering Coefficient, Betweenness Centrality, PeC and other six parameters.)
说明: 根据Degree Centrality、Co-Expression Weighted by clustering Coefficient、Betweenness Centrality、PeC等六种参数的计算来寻找关键蛋白质(Find the key proteins according to the calculation of Degree Centrality, Co-Expression Weighted by clustering Coefficient, Betweenness Centrality, PeC and other six parameters.)
说明: 用matlab实现灰狼优化算法,用于最优化计算(Gray Wolf Optimization Algorithms with MATLAB for Optimal Computing)
说明: matlab实现蝙蝠优化(BA)算法,用于最优化计算(Bat optimization (BA) algorithm implemented by MATLAB for optimization calculation)
matlab实现蝙蝠优化(BA)算法,用于最优化计算(Bat optimization (BA) algorithm implemented by MATLAB for optimization calculation)
基于子区域的粒子群优化算法研究,粒子群算法是进化算法的一种,多用于路径规划等问题(Subregion-based Particle Swarm Optimization)
说明: 基于子区域的粒子群优化算法研究,粒子群算法是进化算法的一种,多用于路径规划等问题(Subregion-based Particle Swarm Optimization)
一个实现多目标进化计算的数据集,用来测试不同的真实pareto前沿(A data set for multi-objective evolutionary computation to test different real Pareto Frontiers)
说明: 一个实现多目标进化计算的数据集,用来测试不同的真实pareto前沿(A data set for multi-objective evolutionary computation to test different real Pareto Frontiers)
采用改进的遗传算法,对柔性车间调度问题进行求解(Solving flexible shop scheduling problem with improved genetic algorithm)
说明: 采用改进的遗传算法,对柔性车间调度问题进行求解(Solving flexible shop scheduling problem with improved genetic algorithm)